This is exercise 10 in section 3.2 of Kreyszig's Introductory Functional Analysis with Applications:
(Zero Operator): Let $T:X \to X$ be a bounded linear operator on complex inner product space $X$. If $\langle Tx,x\rangle =0$ for all $x \in X$, show that $T=0$.
I had solved little kindly guide me further
Solution:
Let $\langle Tx,x\rangle =0$ for all $x \in X$. Let $x=u+av$ where $v,u$ belong to $X$ and $a$ be the scalar then $$ \langle Tx,x\rangle =\langle T(u+av), u+av\rangle $$ since $T$ is linear then \begin{align} \langle Tx,x\rangle &=\langle Tu+aTv, u+av\rangle \\ & =\langle Tu,u\rangle +\overline{a}\langle Tu,v\rangle +a\langle Tv,u\rangle +a\overline{a}\langle Tv,v\rangle \\ & =\overline{a} \langle Tu,v\rangle +a\langle Tv,u\rangle \end{align}