$(\Leftarrow)$ If $T\circ T^{*}=I$ we had $$\langle x,x \rangle=\langle (T\circ T^{*}) (x),x \rangle=\langle T(x),T(x) \rangle, \forall x\in H.$$ Hence, $\Vert T(x)\Vert=\Vert x \Vert$, $\forall x\in H$.
$(\Rightarrow)$ Suppose that $\Vert T(x)\Vert=\Vert x \Vert$, we had $$\langle T(x),T(x) \rangle=\langle x,x \rangle \Leftrightarrow \langle x,T(x) \rangle=\langle x,T^{*}(x) \rangle \Leftrightarrow \langle x,T(x) -T^{*}(x)\rangle=0,$$ for all $x\in H$. I do not know what to do now...