We assume that $\langle Tx, y \rangle = 0$ for all $x,y \in H$ implies $T=0$.
Consider
$$
\begin{aligned}
0 &= \langle T(\alpha x + y), \alpha x + y\rangle \\
&= |\alpha|^2 \langle Tx, x\rangle + \alpha \langle T x, y \rangle + \alpha^* \langle T y, x \rangle + \langle T y, y \rangle \\
&= \alpha \langle T x, y\rangle + \alpha^* \langle T y, x \rangle,
\end{aligned}
$$
which holds for all $\alpha \in \mathbb{C}$. Now together the cases $\alpha = 1$ and $\alpha = i$ imply that $\langle T x, y \rangle = 0$ for all $x,y \in H$.
Note that we require the Hilbert space to be over $\mathbb{C}$ for this to hold however. For a counterexample consider the Hilbert space $\mathbb{R}^2$ with the standard Euclidean inner product and take
$$
T = \begin{pmatrix}
0 & -1 \\
1 & 0
\end{pmatrix}
$$
then for $x = (x_1,x_2)$ we have $Tx = (-x_2,x_1)$ and so $\langle Tx, x \rangle = -x_2 x_1 + x_1 x_2 = 0$ but $T \neq 0$.