Questions tagged [polygamma]

For questions about, or related to the polygamma function.

The polygamma function of order $m$ is a meromorphic function on the complex plane defined to be the $(m + 1)$-th derivative of the logarithm of the gamma function; that is,

$$\psi^{(m)}(z) = \frac{d^{m + 1}}{dz^{m + 1}} \ln \Gamma(z)$$

Alternatively, this function can be denoted as $\psi_m$. These functions are holomorphic except at the non-positive integers, where they each have a pole of order $m + 1$.

When $m = 0$, $\psi_0$ is frequently called the digamma function, and $\psi_1$ is called the trigamma function.

These functions satisfy a recurrence relation

$$\psi_n(z + 1) = \psi_n(z) + (-1)^n n! z^{-n - 1}$$

and a reflection formula

$$\psi_n(1 - z) + (-1)^{n + 1} \psi_n(z) = (-1)^n \pi \frac{d^n}{dz^n} \cot(\pi z)$$ For more, see polygamma function on Wolfram MathWorld.

148 questions
2
votes
1 answer

Can somebody show me how to derive the identity relating the polygamma function and the lerch transcendent

How do u derive this identity below? $$\Phi(-1,m+1,z)=\frac{1}{(-2)^{m+1}m!}\left(\psi^{(m)}\left(\frac{z}{2}\right)-\psi^{(m)}\left(\frac{z+1}{2}\right)\right)$$ If Lerch transcendent is defined as…
Richie
  • 49
0
votes
1 answer

Is there a general summation formula for the polygamma function at $z=1/2$? i.e $\psi^{(s)}(\frac{1}{2})$ for all s.

For $s>0$ one has $ \psi^{(s)}(\frac{1}{2}) = s! \cdot \zeta(s+1, \frac{1}{2}) \cdot (-1)^{s+1} $. E.g. $ \psi^{(1)}(\frac{1}{2}) = 3 \cdot \zeta(2) $ $ \psi^{(2)}(\frac{1}{2}) = -14 \cdot \zeta(3) $ $ \psi^{(3)}(\frac{1}{2}) = 90 \cdot \zeta(4)…