For $s>0$ one has $ \psi^{(s)}(\frac{1}{2}) = s! \cdot \zeta(s+1, \frac{1}{2}) \cdot (-1)^{s+1} $.
E.g.
$ \psi^{(1)}(\frac{1}{2}) = 3 \cdot \zeta(2) $
$ \psi^{(2)}(\frac{1}{2}) = -14 \cdot \zeta(3) $
$ \psi^{(3)}(\frac{1}{2}) = 90 \cdot \zeta(4) $
etc.
However, Mathematica gives
$ \psi^{(-1)}(\frac{1}{2}) = \frac{\ln(\pi)}{2} $
$ \psi^{(-2)}(\frac{1}{2}) = \ln(A^\frac{3}{2}2^\frac{5}{24}\pi^\frac{1}{4}), $ where $A$ is the Glaisher-Kinkelin Constant
$ \psi^{(-3)}(\frac{1}{2}) = \ln(A^\frac{1}{2}2^\frac{1}{16}\pi^\frac{1}{16}) + \frac{7 \zeta(3)}{32\pi^2} $
and I'm not sure how these are obtained since negative integers plugged into the formula above yields wonky results.