How do u derive this identity below?
$$\Phi(-1,m+1,z)=\frac{1}{(-2)^{m+1}m!}\left(\psi^{(m)}\left(\frac{z}{2}\right)-\psi^{(m)}\left(\frac{z+1}{2}\right)\right)$$
If Lerch transcendent is defined as this $$\Phi(-1,m+1,z):=\sum_{k=0}^\infty\frac{(-1)^k}{(z+k)^{m+1}}$$
If also the polygamma function is defined as this $$\psi^{(n)}(z):=\frac{\mathrm d^{n+1}}{\mathrm dz^{n+1}}\log\Gamma(z)=-\gamma \delta_{n0}-\frac{(-1)^nn!}{z^{n+1}}+\sum_{k=1}^\infty\left(\frac{1}{k}\delta_{n0}-\frac{(-1)^nn!}{(k+z)^{n+1}}\right)$$