0

More precisely, is the inequality $\Big(\displaystyle\sum_{n=1}^N a_n\Big)^p\leq\sum(a_n)^p$ true for $a_n\geq0$ for all $n\in\{1,\ldots,N\}$ and $p\in(0,\infty)$?

EDIT: And if so, will it also hold for an infinite sum under the same conditions?

Asaf Karagila
  • 393,674

1 Answers1

0

Neither direction on the inequality holds in general.

Consider $a_1 = a_2 = \ldots = a_n = 1$ and $p>1$, then

$$\left(\sum_{i=1}^n a_i \right)^p = n^p.$$

However,

$$\sum_{i=1}^n {a_i}^p = n < n^p$$

since $p>1$; thus,

$$\sum_{i=1}^n {a_i}^p < \left(\sum_{i=1}^n a_i\right)^p.$$

If instead $0<p<1$, then $n^p < n$, giving

$$\left(\sum_{i=1}^n a_i\right)^p < \sum_{i=1}^n {a_i}^p.$$