Let $(A_n)_{n=1}^{\infty}$ be a pairwise disjoint collection.
$\limsup A_n = \emptyset$?!
This is in relation to @StephenMontgomery-Smith's hint here.
Trying prove $\sigma$-additivity from continuity of measure, I ended up with
$\mu(A) - \sum_{n=1}^{\infty} \mu(A_n) = \mu(\limsup A_n)$ (where $A = \bigcup_{n=1}^{\infty} A_n$). I guess $\limsup A_n = \emptyset$. Otherwise, how do I show that its measure is zero?
Here is my attempt to prove that $\limsup A_n = \emptyset$.
$\limsup A_n = \bigcap_{k=1}^{\infty} \bigcup_{n=k}^{\infty} A_n$
$=\bigcap_{k=1}^{\infty} \bigcup_{n=k+1}^{\infty} A_n$
$=\bigcap_{k=1}^{\infty} A \setminus B_k$ (where $B_n = \bigcup_{k=1}^{n} A_k$)
$=\bigcap_{k=1}^{\infty} A \cap B_k^{C}$
$=(A \cap B_1^{C}) \cap (A \cap B_2^{C}) \cap ...$
$=A \cap (B_1^{C} \cap B_2^{C} \cap ...)$
$=A \cap (B_1 \cup B_2 \cup ...)^{C}$
$=A \cap A^{C}$
$=\emptyset$
If this is correct, which part makes use of the fact that $(A_n)_{n=1}^{\infty}$ be a pairwise disjoint collection?