Let $(A_n)_{n=1}^{\infty}$ be a pairwise disjoint collection.
$\liminf A_n = \emptyset$?!
Spin-off from here.
My attempt:
$\liminf A_n$
$= \bigcup_{k=1}^{\infty} \bigcap_{n=k}^{\infty} A_n$
$= \bigcup_{k=1}^{\infty} (A_k \cap A_{k+1} \cap ...)$
$= (A_1 \cap A_{2} \cap ...) \cup (A_2 \cap A_{3} \cap ...) \cup ...$
$= \emptyset \cup \emptyset \cup ... = \emptyset$
Is this right?
How does one best intuitively explain $\liminf A_n = \emptyset$, $\limsup A_n = \emptyset$ and/or $\lim A_n = \emptyset$ if $(A_n)_{n=1}^{\infty}$ is a pairwise disjoint collection? As I recall, $\limsup A_n$ means something like $A_n$ infinitely often and $\liminf A_n$ means something like $A_n$ almost always, but I'm lost after that.