0

Let $H$ be a Hilbert space, $<,>$ be its norm, and $A:H\to H$ be an operator. Is it true $A=0 \Leftrightarrow\langle\Psi, A \Psi\rangle=0\ \left(^\forall \Psi\in H\right)$?

neconoco
  • 41
  • 6

1 Answers1

1

Theorem:Let $H$ be a complex Hilbert space, $<,>$ be its inner product, and $A$ be an operator. If $<x,Ax>=0$ (for any $x\in H$), then $A=0$.

Proof: For any $x,y\in H$, $<x+y,T(x+y)>=<x,Tx>+<x,Ty>+<y,Tx>+<y,Ty>$ $=<x,Ty>+<y,Tx>$.

By the assumption, $<x,Ty>+<y,Tx>=0$.

We replace $x$ by $ix$ and get

$-i<x,Ty>+i<y,Tx>=0$

By the two equation, we get

$<x, Ty>=0$.

We substitute $x=Ty$ and get $||Ty||^2=0$. It means $Ty=0$ for any $y\in H$.

neconoco
  • 41
  • 6