$\forall a,b,c\ge 0: ab+bc+ca=3,$ find minimal value $$P=\frac{1}{\sqrt{a+bc}}+\frac{1}{\sqrt{b+ca}}+\frac{1}{\sqrt{c+ab}}$$ By $a=b=c=1$ we have $P\ge \frac{3}{\sqrt{2}}$ I try use AM-GM $$P^3\ge 27 \frac{1}{\sqrt{a+bc}}.\frac{1}{\sqrt{b+ca}}.\frac{1}{\sqrt{c+ab}}$$ We need prove $$2\sqrt{2}\ge \sqrt{(a+bc)(b+ca)(c+ab)}\iff (a+bc)(b+ca)(c+ab)\le 8$$Also by AM-GM $$(a+bc)(b+ca)(c+ab)\le \frac{(a+b+c+3)^3}{27}\le 8 \iff a+b+c\le 3$$ The last inequality is wrong.
How can I fix the approach? Thanks Updated edit:
How to find maximal value of $\sqrt{a+bc}+\sqrt{b+ca}+\sqrt{c+ab}$ ?
If we can find it, the miminum seems easy to get.
Updated: My aboved idea leads nothing since it is not true when $a=b\rightarrow 0.$
I also tried using Holder $$P^2.\sum(a+bc)(b+c)^3\ge 8(a+b+c)^3,$$ but the remain is something wrong. Whether Dragonboy's answer is eligible proof?
