Let $a,b,c>0 : a+b+c=4.$ Find minimum $$T=\dfrac{bc}{b^2+c^2}+\dfrac{ca}{c^2+a^2}+\dfrac{ab}{a^2+b^2}+\frac{1}{a}+\frac{1}{b} +\frac{1}{c}.$$
For $a=b=c=\dfrac{4}{3},$ I got a value $\dfrac{15}{4}$
So we need to prove $$\dfrac{bc}{b^2+c^2}+\dfrac{ca}{c^2+a^2}+\dfrac{ab}{a^2+b^2}+\frac{1}{a}+\frac{1}{b} +\frac{1}{c}\ge \dfrac{15}{4}$$ After using C-S, $$\dfrac{bc}{b^2+c^2}+\dfrac{ca}{c^2+a^2}+\dfrac{ab}{a^2+b^2}\ge \frac{(ab+bc+ca)^2}{\sum_{cyc}ab(a^2+b^2)}$$ Id est, we will prove $$\frac{q^2}{q(16-2q)-4r}+\frac{q^2}{r}\ge \dfrac{15}{4}$$
How can I continue it ?
Hope some helps. Thank you.