Proof.
WLOG, assume that $a \ge b \ge c$.
We split into two cases:
Case 1: $a \ge 2$
By AM-GM, we have $\frac{1}{\sqrt{2a + bc}} = \frac{4}{2\sqrt{(2a + bc)\cdot 4}} \ge \frac{4}{2a + bc + 4}$,
and $\frac{1}{\sqrt{2b + ca}} = \frac{2}{2\sqrt{(2b + ca)\cdot 1}}
\ge \frac{2}{2b + ca + 1}$, and $\frac{1}{\sqrt{2c + ab}}
= \frac{2}{2\sqrt{(2c + ab)\cdot 1}} \ge \frac{2}{2c + ab + 1}$. By Cauchy-Bunyakovsky-Schwarz inequality, we have
$$\frac{2}{2b + ca + 1} + \frac{2}{2c + ab + 1}
\ge \frac{8}{2b + ca + 1 + 2c + ab + 1}.$$
It suffices to prove that
$$\frac{4}{2a + bc + 4} + \frac{8}{2b + ca + 1 + 2c + ab + 1} \ge \frac52 > 1 + \sqrt 2. \tag{1}$$
(1) is true. The proof is given at the end.
$\phantom{2}$
Case 2: $a < 2$
By AM-GM, we have
$\frac{1}{\sqrt{2a + bc}} = \frac{2\sqrt 2}{2\sqrt{(2a+bc)\cdot 2}} \ge \frac{2\sqrt 2}{2a + bc + 2}$
and
$\frac{1}{\sqrt{2b + ca}} = \frac{2\sqrt 2}{2\sqrt{(2b+ca)\cdot 2}} \ge \frac{2\sqrt 2}{2b + ca + 2}$
and
$\frac{1}{\sqrt{2c+ab}}
= \frac{2}{2\sqrt{(2c+ab)\cdot 1}} \ge \frac{2}{2c + ab + 1}$.
It suffices to prove that
$$\frac{2\sqrt 2}{2a + bc + 2} + \frac{2\sqrt 2}{2b + ca + 2} + \frac{2}{2c + ab + 1} \ge 1 + \sqrt 2$$
or
$$\frac{4 - 4ab - abc^2 - 2a^2c - 2b^2c}{(2a + bc + 2)(2b + ca + 2)}\cdot\sqrt 2 + \frac{2}{2c + ab + 1} - 1 \ge 0. \tag{2}$$
Using $b, c \le 1$, we have $4 - 4ab - abc^2 - 2a^2c - 2b^2c
\ge 4(bc + ca) - abc - 2a^2 c - 2bc = c(2-a)(2a + b) \ge 0$. Using $\sqrt 2 > 7/5$, it suffices to prove that
$$\frac{4 - 4ab - abc^2 - 2a^2c - 2b^2c}{(2a + bc + 2)(2b + ca + 2)}\cdot\frac75 + \frac{2}{2c + ab + 1} - 1 \ge 0. \tag{3}$$
(3) is true. The proof is given at the end.
$\phantom{2}$
Proof of (1):
Let $p = b + c, q = bc$.
From $ab + bc + ca = 1$, we have $ap + q = 1$
which results in $a = \frac{1 - q}{p}$.
From $a \ge 2$, we have $q \le 1 - 2p$.
Thus, we have
$$0 < p \le 1/2, \quad 0 \le q \le 1 - 2p. $$
(1) is written as
$$f(q) := - \left( 10-5\,p \right) {q}^{2}+ \left( -10\,{p}^{2}+33\,p+8 \right)
q+2\, \left( 6\,p+1 \right) \left( 1-2\,p \right)\ge 0.
$$
Since $0 < p \le 1/2$, $f(q)$ is concave.
We have $f(0) \ge 0$ and $f(1 - 2p)
= 10p(1 - 2p)(7 - 2p)\ge 0$.
Thus, $f(q) \ge 0$ for all $0 \le q \le 1 - 2p$.
We are done.
$\phantom{2}$
Proof of (3):
Using $c = \frac{1 - ab}{a + b}$, after simplifying (3), it suffices to prove that
\begin{align*}
&6\,{a}^{4}{b}^{3}+6\,{a}^{3}{b}^{4}-12\,{a}^{5}b-24\,{a}^{4}{b}^{2}-36
\,{a}^{3}{b}^{3}-24\,{a}^{2}{b}^{4}-12\,a{b}^{5}+43\,{a}^{4}b\\
&\quad +76\,{a}^
{3}{b}^{2}+76\,{a}^{2}{b}^{3}+43\,a{b}^{4}+8\,{a}^{4}-2\,{a}^{3}b+4\,{
a}^{2}{b}^{2}-2\,a{b}^{3}+8\,{b}^{4}\\
&\quad -15\,{a}^{3}+2\,{a}^{2}b+2\,a{b}^{
2}-15\,{b}^{3}-2\,{a}^{2}-16\,ab-2\,{b}^{2}\\
&\ge 0. \tag{4}
\end{align*}
From $2 > a \ge b \ge c\ge 0$ and $ab + bc + ca = 1$,
we have
$$0 < b \le 1, \quad \frac{1}{3b} \le a < 2. \tag{5}$$
Let
$$s = \frac{1}{b} - 1, \quad t = \frac{a - \frac{1}{3b}}{2 - a}.$$ Then $s, t \ge 0$
and
$$b = \frac{1}{1 + s}, \quad a = \frac{1}{3b}\cdot \frac{1}{1 + t} + \frac{2t}{1 + t}. \tag{6}$$
Using (6), (4) is written as
$$\frac{1}{81(1 + t)^5(1 + s)^5}f(s, t)\ge 0$$
where $f(s, t)$ is a polynomial with non-negative coefficients.
We are done.