Problem. Let $a,b,c\ge 0: ab+bc+ca=1$. Find Minimum of $P$: $$P=\frac{1}{\sqrt{2a+bc}}+\frac{1}{\sqrt{2b+ca}}+\frac{1}{\sqrt{2c+ab}}$$ The source of the problem is unknown.
Here is my attempt:
We have: $$P^2=\frac{1}{2a+bc}+\frac{1}{2b+ca}+\frac{1}{2c+ab}+2\sum_{cyc}\frac{1}{\sqrt{(2a+bc)(2b+ca)}}$$ I proved 2 inequalities: $$\frac{1}{2a+bc}+\frac{1}{2b+ca}+\frac{1}{2c+ab}\ge 2 (1)$$ and: $$\frac{\sqrt{2a+bc}+\sqrt{2b+ca}+\sqrt{2c+ab}}{\sqrt{(2a+bc)(2b+ca)(2c+ab)}}\ge \frac{1+2\sqrt{2}}{2}(2)$$
- Prove (1): $$\frac{1}{2a+bc}+\frac{1}{2b+ca}+\frac{1}{2c+ab}\ge 2$$ $$\iff f(r)=2r^2+r(4p^2-17p+14)+2(2-p)\le 0 (*)$$ which: $$f^{'}(r)=4r+4p^2-17p+14$$
$\bullet:\sqrt{3}\le p\le 2$ which implies: $ r\le \dfrac{p}{9}\implies f^{'}(r)< 4p^2-\dfrac{149}{9}p+14 =(p-2.95)(p-1.18)<0$
Hence, $f(r)$ is decreasing when $\sqrt{3}\le p\le 2$ and using Schur inequality: $r\ge \dfrac{p(4-p^2)}{9} $, it leads to: $$f(r)\le f\left(\frac{p(4-p^2)}{9}\right)=2p^6-32p^5+137p^4+18p^3-580p^2+342p+324$$ $$=(p-2)\left((p-2)(2p^4-28p^3+17p^2+198p+144)+126\right)<0$$
$\bullet: 2\le p\le 4$, we rewrite (*) as: $$ f(r)=-2r^2-r(4p^2-17p+14)+2(p-2)\ge 0$$ Hence: $$ f^{''}(r)=-4<0\implies min f(r)=min \{f(0);f\left(\frac{1}{3p}\right)\}$$ Calculating: $$f(0)=2(p-2)\ge 0$$ $$f\left(\frac{1}{3p}\right)=\frac{-2}{9p^2}-\frac{4p^2-17p+14}{3p}+2(p-2)\ge \frac{11}{8}>0$$
- Prove (2):
Squaring both side (2), we will prove: $$2(a+b+c)+1+2\sum_{cyc}\sqrt{(2a+bc)(2b+ca)}\ge \left(\frac{1+2\sqrt{2}}{2}\right)^2(2a+bc)(2b+ca)(2c+ab) $$
It seems complicated for me to full proof. Am I on right approach ? If you find any mistake, please tell me why. I also thought of Holder inequality, which gives: $$P^2.\sum_{cyc}(2a+bc)(mb+nc)^3\ge ((m+n)(a+b+c))^3$$ Hope to see more ideas. Thank you!