I continue my work on the minimum of the Gamma's function and recently I found a slightly different way via an infinite series as I have the beginning :
Let $0<x$ then define :
$$f(x)=x!,h(x)=f'(x)$$
Then we have :
$$h(k)=0$$
And :
$$k\simeq \frac{1}{2}\left(\pi-e+\frac{1}{2}\right)-\frac{1}{28}\left(\pi-e\right)^{\pi e}-\frac{10}{37}\left(\pi-e\right)^{2\pi e}-\frac{10000}{3675}\left(\pi-e\right)^{3\pi e}-\frac{1000}{499}\left(\pi-e\right)^{4\pi e}$$
I would like to find a infinite series like :
$$k=\frac{1}{2}\left(\pi-e+\frac{1}{2}\right)-\sum_{k=1}^{\infty}a_k\left(\pi-e\right)^{k\pi e}$$
Where $a_k>0$
I can progress numericaly not theoreticaly .
Edit following Tyma Gaidash's comment :
We have (if there is no mistake) 36 decimals right for the minimum value of the gamma function taking for $k$ :
$$k\simeq \frac{1}{2}\left(\pi-e+\frac{1}{2}\right)-\frac{1}{28}\left(\pi-e\right)^{\pi e}-\frac{10}{37}\left(\pi-e\right)^{2\pi e}-\frac{10000}{3675}\left(\pi-e\right)^{3\pi e}-\frac{1000}{499}\left(\pi-e\right)^{4\pi e}-\frac{736}{100}\left(\pi-e\right)^{5\pi e}-\frac{5}{10}\left(\pi-e\right)^{6\pi e}$$
How to find the sequence $a_k$ ?