Working on one of other question Show the inequality $\frac{\sqrt{\pi}}{2}<\left(\pi-e\right)!$ I found :
$$\frac{\left(\pi-e+\frac{1}{2}\right)}{2}\simeq x_{min}=0.4616\cdots$$
Where $x_{min}$ verify $f'(x_{min})=0$ of $f(x)=x!$ for $x>0$
Now I refine it to get :
$$\frac{\left(\pi-e+\frac{1}{2}\right)}{2}-\frac{2\left(\pi^{2}-e^{2}\right)^{e+\pi}}{\left(\pi^{2}+e^{2}\right)^{e+\pi}}\simeq x_{min}$$
Edit after Tyma Gaidash comment :
We have a better result with :
$$x_{min}\simeq\frac{\left(\pi-e+0.5\right)}{2}-2\frac{\left(\pi^{2}-e^{2}\right)^{\left(\pi+e\right)}}{\left(\pi^{2}+e^{2}\right)^{\left(\pi+e\right)}}+\frac{\left(\pi^{3}-e^{3}\right)^{\frac{7}{4}\left(\pi+e\right)}}{\left(\pi^{3}+e^{3}\right)^{\frac{7}{4}\left(\pi+e\right)}}-\frac{\left(\pi^{4}-e^{4}\right)^{2\left(\pi+e\right)}}{\left(\pi^{4}+e^{4}\right)^{2\left(\pi+e\right)}}+\frac{\left(\pi^{5}-e^{5}\right)^{\frac{13}{5}\left(\pi+e\right)}}{\left(\pi^{5}+e^{5}\right)^{\frac{13}{5}\left(\pi+e\right)}}-\frac{\left(\pi^{6}-e^{6}\right)^{\frac{18}{5}\left(\pi+e\right)}}{\left(\pi^{6}+e^{6}\right)^{\frac{18}{5}\left(\pi+e\right)}}$$
We can continue but it converge very slowly .
Is it the beginning of something like a power series or can we find something like $$\frac{\left(\pi-e+\frac{1}{2}\right)}{2}+\sum_{n=2}^{\infty}\frac{a_{n\ }\left(\pi^{n}-e^{n}\right)^{b_{n}\left(e+\pi\right)}}{\left(\pi^{n}+e^{n}\right)^{b_{n}\left(e+\pi\right)}}=x_{min}$$ where $a_n,b_n$ are rational. How to explain that ?