I want to solve the Sturm-Liouville problem:
$\mathcal{A}u=-u''$
with I.C:
\begin{cases} u(0)=0\\ u'(L)=0 \end{cases}
where $\mathcal{A}$ is the Sturm-Liuville operator defined on $\mathscr{D}_A:\{u\in C^2([0,L])$.
By reading this post from SE , I see that it is practically the same as a PDE. So using the characteristic equation, I obtain:
$u''+Au=0$
$m=\pm\sqrt{-4A}/2=\pm iA$
$u(x)=Be^{iAx}+Ce^{-iAx}$
We rewrite to :
\begin{gather} u(L)= \begin{cases} B\cos Ax\\ iB\sin Ax \end{cases} \end{gather}
Since the first conI seedition yields a existence of u at the origin, we can disregard from the cosine solution. We get thus:
\begin{equation} u(x)=iB\sin Ax \end{equation}
Using first IC, we have $u(x)=\sin Ax$
Then using the second IC:
\begin{equation} \begin{array} fu'(x)=A\cos Ax\\ u'(L)=A\cos A L\\ 0=A\cos A x\\ \cos AL =0\\ A=\big(\frac{\pi}{2}+n\pi\big)\frac{1}{L} \end{array} \end{equation}
This gives
\begin{equation} u(x)=\sin \bigg(\big(\frac{\pi}{2}+n\pi\big)\frac{x}{L}\bigg) \end{equation}
What is wrong?
Thanks!