Find the geodesic lines and curves of $x^2+y^2+z^2=r^2$
The following surface is a sphere so we can use the parametrization
$$X(\theta,\phi)=(rsin\phi cos\theta,rsin\phi sin\theta,rcos\phi)$$
- why is it $X(\theta,\phi)$ and not $X(\phi,theta)$?
Next we have to find the metric
$$<X_{\theta},X_{\theta}>=r^2sin^2\phi sin^2\theta+r^2sin^2\phi cos^2\theta=r^2sin^2\phi(sin^2\theta+cos^2\theta)=r^2sin^2\phi$$
$$<X_{\theta},X_{\phi}>=<X_{\phi},X_{\theta}>=0$$
$$<X_{\phi},X_{\phi}>=r^2cos^2\phi cos^2\theta+r^2cos^2\phi sin^2\theta+r^2sin^2\phi=r^2cos^2\phi(co^2\theta+sin^2\theta)+r^2sin^2\phi=r^2(cos^2\phi+sin^2\phi)=r^2$$
So we have $$g_{ij}=\begin{pmatrix} r^2sin^2\phi & 0\\0 & r^2\end{pmatrix}$$
- could we use that fact that the metric of a surface of revolution is $$g_{ij}=\begin{pmatrix} r^2 & 0\\0 & 1\end{pmatrix}$$?
Next we have to find the Christoffel coefficients:
To do so we find:
$$g^{ij}=\begin{pmatrix} \frac{1}{r^2sin^2\phi} & 0\\0 & \frac{1}{r^2}\end{pmatrix}$$
$$g_{ij;\theta}=\begin{pmatrix} 0 & 0\\0 & 0\end{pmatrix}$$
$$g_{ij;\phi}=\begin{pmatrix} 2r^2\cos\phi & 0\\0 & \frac{1}{r^2}\end{pmatrix}$$
To get
$$\Gamma_{11}^{1}=\frac{1}{2}(0-0+0)\frac{1}{r^2sin^2\phi}+\frac{1}{2}(0-2r^2cos\phi+0)0=0$$
$$\Gamma_{12}^{1}=\Gamma_{21}^{1}=\frac{1}{2}(0-0+0)\frac{1}{r^2sin^2\phi}+\frac{1}{2}(0-0+0)0=0$$
$$\Gamma_{22}^{1}=\frac{1}{2}(0-0+0)\frac{1}{r^2sin^2\phi}+\frac{1}{2}(\frac{1}{r^2}-\frac{1}{r^2}+\frac{1}{r^2})0=0$$
$$\Gamma_{11}^{2}=\frac{1}{2}(0-0+0)0+\frac{1}{2}(0-2r^2cos\phi+0)\frac{1}{r^2}=cos\phi$$
$$\Gamma_{12}^{2}=\Gamma_{21}^{2}=\frac{1}{2}(2r^2cos\phi-0+0)0+\frac{1}{2}(0-0+0)\frac{1}{r^2}=0$$
$$\Gamma_{22}^{2}=\frac{1}{2}(0-0+0)0+\frac{1}{2}(\frac{1}{r^2}-\frac{1}{r^2}+\frac{1}{r^2})r^2=1$$
- But how do I continue from here? in the book I found 3 different formulas?
is there a written algorithm to find geodesic lines and curves of a surface?
can the process be done in matlab?