this is no true in fact in $\mathbb{R^2}$ let
$$
U=\left(\begin{matrix}
i& 0\\
0& -i
\end{matrix}\right)
$$
then $U$ is unitary matrix and
$$
T=\left(\begin{matrix}
1& 1\\
1& 2
\end{matrix}\right)
$$
we have :
$$
U^tTU=\left(\begin{matrix}
-i& 0\\
0& i
\end{matrix}\right)\left(\begin{matrix}
1& 1\\
1& 2
\end{matrix}\right)\left(\begin{matrix}
i& 0\\
0& -i
\end{matrix}\right)=\left(\begin{matrix}
-i& -i\\
i& 2i
\end{matrix}\right)\left(\begin{matrix}
i& 0\\
0& -i
\end{matrix}\right)=\left(\begin{matrix}
1& -1\\
-1& 2
\end{matrix}\right)
$$
the conclusion come directly by enter link description here or for $x=(\frac{\sqrt 2}{2},\frac{\sqrt 2}{2}) $
we have :
$$
\langle T x,x\rangle=(\sqrt2,\frac{3\sqrt 2}{2})\left(\begin{matrix}
\frac{\sqrt 2}{2}\\
\frac{\sqrt 2}{2}
\end{matrix}\right)=5/2
$$
but
$$
\langle U^tTU x,x\rangle=(0,\frac{\sqrt 2}{2})\left(\begin{matrix}
\frac{\sqrt 2}{2}\\
\frac{\sqrt 2}{2}
\end{matrix}\right)=1/2
$$
**Edit : **
For the second question this is true that numerical range is preserved under unitary maps, in fact this use this trivial lemma
$$\|x\|=1 \iff \|Ux\|=1$$
Proof :
$$
\|Ux\|^2=\langle Ux,Ux\rangle=\langle U^tUx,x\rangle=\langle x,x\rangle=\|x\|
$$
so
\begin{eqnarray}
W(U^tTU)&=&\{ \langle U^tTUx,x\rangle ; \|x\|=1\}\\&=&\{ \langle U^tTUx,x\rangle ; \|Ux\|=1\}\\
&=& \{ \langle TUx,Ux\rangle ; \|Ux\|=1\}\\
&=&\{ \langle T\color{red}{y},\color{red}{y}\rangle ; \|\color{red}{y}\|=1\}\\
&=& W(T)
\end{eqnarray}