The error message is a little misleading. It seems to be happening because GCC ran out of 8-bit registers.
Interestingly, it compiles without error messages if you just edit the template to remove references to the last 2 operands (https://godbolt.org/z/oujNP7), even without dropping them from the list of input constraints! (Trimming down your asm statement is a useful debugging technique to figure out which part of it GCC doesn't like, without caring for now if the asm will do anything useful.)
Removing 2 earlier operands and changing numbers shows that "r"(head), "r"(drive) weren't specifically a problem, just the combination of everything.
It looks like GCC is avoiding high-8 registers like AH as inputs, and x86-16 only has 4 low-8 registers but you have 6 u8 inputs. So I think GCC means it ran out of byte registers that it was willing to use.
(The 3 outputs aren't declared early-clobber so they're allowed to overlap the inputs.)
You could maybe work around this by using "rm" to give GCC the option of picking a memory input. (The x86-specific constraints like "Q" that are allowed to pick a high-8 register wouldn't help unless you require it to pick the correct one to get the compiler to emit a mov for you.) That would probably let your code compile, but the result would be totally broken.
You re-introduced basically the same bugs as before: not telling the compiler which registers you write, so for example your mov %4, %%al will overwrite one of the registers GCC picked as an input, before you actually read that operand.
Declaring clobbers on all the registers you use would leave not enough registers to hold all the input variables. (Unless you allow memory source operands.) That could work but is very inefficient: if your asm template string starts or ends with mov, you're almost always doing it wrong.
Also, there are other serious bugs, apart from how you're using inline asm. You don't supply an input pointer to your buffer. int $0x13 doesn't allocate a new buffer for you, it needs a pointer in ES:BX (which it dereferences but leaves unmodified). GCC requires that ES=DS=SS so you already have to have properly set up segmentation before calling into your C code, and isn't something you have to do every call.
Plus even in C terms outside the inline asm, your function doesn't make sense. status = &lstatus; modifies the value of a function arg, not dereferencing it to modify a pointed-to output variable. The variable written by those assignments die at the end of the function. But the global temporaries do have to be updated because they're global and some other function could see their value. Perhaps you meant something like *status = lstatus; with different types for your vars?
If that C problem isn't obvious (at least once it's pointed out), you need some more practice with C before you're ready to try mixing C and asm which require you to understand both very well, in order to correctly describe your asm to the compiler with accurate constraints.
A good and correct way to implement this is shown in @fuz's answer to your previous question. If you want to understand how the constraints can replace your mov instructions, compile it and look at the compiler-generated instructions. See https://stackoverflow.com/tags/inline-assembly/info for links to guides and docs. e.g. @fuz's version without the ES setup (because GCC needs you to have done that already before calling any C):
typedef unsigned char u8;
typedef unsigned short u16;
// Note the different signature, and using the output args correctly.
void read(u8 sector_size, u8 track, u8 sector, u8 head, u8 drive,
u8 *buffer, u8 *status, u8 *sectors_read)
{
u16 result;
asm volatile("int $0x13"
: "=a"(result)
: "a"(0x200|sector_size), "b"(buffer),
"c"(track<<8|sector), "d"(head<<8|drive)
: "memory" ); // memory clobber was missing from @fuz's version
*status = result >> 8;
*sectors_read = result >> 0;
}
Compiles as follows, with GCC10.1 -O2 -m16 on Godbolt:
read:
pushl %ebx
movzbl 12(%esp), %ecx
movzbl 16(%esp), %edx
movzbl 24(%esp), %ebx # load some stack args
sall $8, %ecx
movzbl 8(%esp), %eax
orl %edx, %ecx # shift and merge into CL,CH instead of writing partial regs
movzbl 20(%esp), %edx
orb $2, %ah
sall $8, %edx
orl %ebx, %edx
movl 28(%esp), %ebx # the pointer arg
int $0x13 # from the inline asm statement
movl 32(%esp), %edx # load output pointer arg
movl %eax, %ecx
shrw $8, %cx
movb %cl, (%edx)
movl 36(%esp), %edx
movb %al, (%edx)
popl %ebx
ret
It might be possible to use register u8 track asm("ch") or something to get the compiler to just write partial regs instead of shift/OR.
If you don't want to understand how constraints work, don't use GNU C inline asm. You could instead write stand-alone functions that you call from C, which accept args according to the calling convention the compiler uses (e.g. gcc -mregparm=3, or just everything on the stack with the traditional inefficient calling convention.)
You could do a better job than GCC's above code-gen, but note that the inline asm could optimize into surrounding code and avoid some of the actual copying to memory for passing args via the stack.