There is a situation where adding or removing a const qualifier to a function argument is a serious bug. It comes when you pass an argument by pointer.
Here’s a simple example of what could go wrong. This code is broken in C:
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
// char * strncpy ( char * destination, const char * source, size_t num );
/* Undeclare the macro required by the C standard, to get a function name that
* we can assign to a pointer:
*/
#undef strncpy
// The correct declaration:
char* (*const fp1)(char*, const char*, size_t) = strncpy;
// Changing const char* to char* will give a warning:
char* (*const fp2)(char*, char*, size_t) = strncpy;
// Adding a const qualifier is actually dangerous:
char* (*const fp3)(const char*, const char*, size_t) = strncpy;
const char* const unmodifiable = "hello, world!";
int main(void)
{
// This is undefined behavior:
fp3( unmodifiable, "Whoops!", sizeof(unmodifiable) );
fputs( unmodifiable, stdout );
return EXIT_SUCCESS;
}
The problem here is with fp3. This is a pointer to a function that accepts two const char* arguments. However, it points to the standard library call strncpy()¹, whose first argument is a buffer that it modifies. That is, fp3( dest, src, length ) has a type that promises not to modify the data dest points to, but then it passes the arguments on to strncpy(), which modifies that data! This is only possible because we changed the type signature of the function.
Trying to modify a string constant is undefined behavior—we effectively told the program to call strncpy( "hello, world!", "Whoops!", sizeof("hello, world!") )—and on several different compilers I tested with, it will fail silently at runtime.
Any modern C compiler should allow the assignment to fp1 but warn you that you’re shooting yourself in the foot with either fp2 or fp3. In C++, the fp2 and fp3 lines will not compile at all without a reinterpret_cast. Adding the explicit cast makes the compiler assume you know what you’re doing and silences the warnings, but the program still fails due to its undefined behavior.
const auto fp2 =
reinterpret_cast<char*(*)(char*, char*, size_t)>(strncpy);
// Adding a const qualifier is actually dangerous:
const auto fp3 =
reinterpret_cast<char*(*)(const char*, const char*, size_t)>(strncpy);
This doesn’t arise with arguments passed by value, because the compiler makes copies of those. Marking a parameter passed by value const just means the function doesn’t expect to need to modify its temporary copy. For example, if the standard library internally declared char* strncpy( char* const dest, const char* const src, const size_t n ), it would not be able to use the K&R idiom *dest++ = *src++;. This modifies the function’s temporary copies of the arguments, which we declared const. Since this doesn’t affect the rest of the program, C doesn’t mind if you add or remove a const qualifier like that in a function prototype or function pointer. Normally, you don’t make them part of the public interface in the header file, since they’re an implementation detail.
¹ Although I use strncpy() as an example of a well-known function with the right signature, it is deprecated in general.