How is this done? I am using Sklearn to train an SVM. My classes are unbalanced. Note that my problem is multiclass, multilabel so I am using OneVsRestClassifier:
mlb = MultiLabelBinarizer()
y = mlb.fit_transform(y_train)
clf = OneVsRestClassifier(svm.SVC(kernel='rbf'))
clf = clf.fit(x, y)
pred = clf.predict(x_test)
Can I add a 'sample_weight' parameter somewhere to account for the unbalanced classes?
When I add a class_weight dict to the svm I get the error:
ValueError: Class label 2 not present
This is because I have converted my labels to binary using the mlb. However, if I do not convert the labels, I get:
ValueError: You appear to be using a legacy multi-label data representation. Sequence of sequences are no longer supported; use a binary array or sparse matrix instead.
class_weight is a dict, mapping the class labels to the weight: {1: 1, 2: 1, 3: 3...}
Here are the details of x and y:
print(X[0])
[ 0.76625633 0.63062721 0.01954162 ..., 1.1767817 0.249034 0.23544988]
print(type(X))
<type 'numpy.ndarray'>
print(y[0])
print(type(y))
[1, 2, 3, 4, 5, 6, 7]
<type 'numpy.ndarray'>
Note that mlb = MultiLabelBinarizer(); y = mlb.fit_transform(y_train) converts y to a binary array.
The suggested answer produces the error:
ValueError: You appear to be using a legacy multi-label data representation. Sequence of sequences are no longer supported; use a binary array or sparse matrix instead.
So, the problem reduces to converting the labels (a np.array) to a sparse matrix.
from scipy import sparse
y_sp = sparse.csr_matrix(y)
This produces the error:
TypeError: no supported conversion for types: (dtype('O'),)
I will open a new query for this.