Regarding ThreadPool.RegisterWaitForSingleObject, this does not tie up a thread per registration (pooled or otherwise). You can test this easily: run the following script in LINQPad which calls that method 20,000 times:
static ManualResetEvent _starter = new ManualResetEvent (false);
void Main()
{
var regs = Enumerable.Range (0, 20000)
.Select (_ => ThreadPool.RegisterWaitForSingleObject (_starter, Go, "Some Data", -1, true))
.ToArray();
Thread.Sleep (5000);
Console.WriteLine ("Signaling worker...");
_starter.Set();
Console.ReadLine();
foreach (var reg in regs) reg.Unregister (_starter);
}
public static void Go (object data, bool timedOut)
{
Console.WriteLine ("Started - " + data);
// Perform task...
}
If that code tied up 20,000 threads for the duration of the 5-second "wait", it couldn't possibly work.
Edit - in response to:
"this is a proof. but is there still a single thread which checks for
signals only ? in the thread pool ?"
This is an implementation detail. Yes, it could be implemented with a single thread that offloads the callbacks to the managed thread pool, although there's no guarantee of this. Wait handles are ultimately managed by operating system, which will most likely trigger the callbacks, too. It might use one thread (or a small number of threads) in its internal implementation. Or with interrupts, it might not block a single thread. It might even vary according to the operating system version. This is an implementation detail that's of no real relevance to us.