If they were indeed quoted correctly here, then in that case your professor is not exactly right.
A plot of the first few days (not shown) shows a featureless departure from Earth to heliocentric orbit, no spiraling.
Nonetheless, there be spirals!
Depending on what you choose for the center of your plot and whether your frame rotates once per year or is "inertial1" it can absolutely look like a spiral around the Earth!
And I can see why one might assume, having seen the spirally pattern and not realize it always looks like that in some frame, that one might think that it looks like a spacecraft spiraling away from Earth, perhaps under ion propulsion.
But it's just the way to bodies in similar orbits look if their periods are very slightly different and one or both are slightly elliptical.
Plots of the two STEREO spacecraft will look something like this too, except there's a pair of counter-spiraling orbits since one leads and one lags.
In the plots distances are in kilometers, and the data is from JPL's Horizons every 6 hours since launch 2009-03-07 04:57.

1not a rotating frame but still accelerating because origin moves with the Earth

import numpy as np
import matplotlib.pyplot as plt
class Body(object):
def init(self, name):
self.name = name
def rotz(vecs, th):
x, y, z = vecs
cth, sth = np.cos(th), np.sin(th)
xrot = x * cth - y * sth
yrot = y * cth + x * sth
return np.vstack((xrot, yrot, z))
fnames = ('Kepler Sun full horizons_results.txt',
'Kepler Earth full horizons_results.txt',
'Kepler Kepler full horizons_results.txt')
bodies = []
for fname in fnames:
with open(fname, 'r') as infile:
lines = infile.read().splitlines()
iSOE = [i for i, line in enumerate(lines) if "<span class="math-container">$$SOE" in line][0]
iEOE = [i for i, line in enumerate(lines) if "$$</span>EOE" in line][0]
print(iSOE, iEOE, lines[iSOE], lines[iEOE])
lines = [line.split(',') for line in lines[iSOE+1:iEOE]]
JD = np.array([float(line[0]) for line in lines])
pos = np.array([[float(item) for item in line[2:5]] for line in lines])
vel = np.array([[float(item) for item in line[5:8]] for line in lines])
b = Body(fname.split()[0])
b.JD = JD
b.pos = pos.T.copy()
b.vel = vel.T.copy()
bodies.append(b)
sun, earth, kepler = bodies
days = kepler.JD - kepler.JD[0]
x, y, z = earth.pos - sun.pos
theta = np.arctan2(y, x)
for body in bodies:
body.posr = rotz(body.pos, -theta)
if True:
plt.figure()
plt.subplot(2, 2, 1)
x, y, z = kepler.pos - earth.pos
plt.plot(x, y, '-r', linewidth=1.0)
plt.plot([0], [0], 'ob')
plt.gca().set_aspect('equal')
plt.title('Kepler minus Earth "inertial"')
plt.subplot(2, 2, 2)
x, y, z = kepler.posr - earth.posr
plt.plot(x, y, '-r', linewidth=1.0)
plt.plot([0], [0], 'ob')
plt.gca().set_aspect('equal')
plt.title('Kepler minus Earth rotating')
plt.subplot(2, 2, 3)
x, y, z = earth.pos - sun.pos
plt.plot(x, y, '-b', linewidth=1.5)
x, y, z = kepler.pos - sun.pos
plt.plot(x, y, '-r', linewidth=1.0)
plt.plot([0], [0], 'oy')
plt.gca().set_aspect('equal')
plt.title('Kepler & Earth minus Sun "inertial"')
plt.subplot(2, 2, 4)
x, y, z = earth.posr - sun.posr
plt.plot(x, y, '-b', linewidth=2.5)
x, y, z = kepler.posr - sun.posr
plt.plot(x, y, '-r', linewidth=1.0)
plt.plot([0], [0], 'oy')
plt.gca().set_aspect('equal')
plt.title('Kepler & Earth minus Sun rotating')
plt.show()