I've been wondering what the current state of the art (both theoretically and practically) for sending messages using changes in a gravitational field is, and I have had a hard time finding information about it online. I've seen the Wikipedia page on gravitational waves, but it seems that gravitational waves per se are not yet practical as a communication medium, since they have yet to be detected.
However, a different (unoriginal, I know) idea is simply to cause a change in a gravitational field from some point, and measure the change at another. You could encode the magnitude and/or frequency of the change into bits and communicate wirelessly. Although this is still subject to the speed of light, it has other benefits over radio communication like easily penetrating all matter.
A particularly slow and inefficient implementation of this might be to attach a large number of powerful rockets to the moon and alter its velocity enough that it changed the timing of ocean tides in a measurable way.
How far can we extend this? Can I build a gravitational detector sensitive enough to measure a bowling ball oscillating near it? How about from the other side of the earth? How little mass can I use?
Can I do it without any mass at all? We know that massless particles are still affected by gravity, and I believe we also know that massless particles have their own gravitational field (in accordance with mass/energy equivalence). Can we exploit the gravity of massless particles to generate high frequency changes in a gravitational field without having to worry about inertia? Can we then use the high frequency of these oscillations to isolate them from the high level of noise generally present in low frequency gravitational detectors?