the position of the trajectory is
$$\mathbf R= \left[ \begin {array}{c} x \left( s \right) \\ y
\left( s \right) \end {array} \right]
\tag 1$$
where $~s~$ is the line element hence
$$v_s=\frac{ds}{dt}\quad ,a_s=\frac{d^2s}{dt^2}$$
from equation (1) you obtain
$$\mathbf v=\frac{d\mathbf R}{ds}\dot s\\
\mathbf a=\frac{d\mathbf R}{ds}\ddot s +\frac{d\mathbf v}{ds}\dot s$$
the tangential vector $~\mathbf t~$ is
$$\mathbf t=\frac{\frac{d\mathbf R}{ds}}{\left|\frac{d\mathbf R}{ds}\right|}\quad, \mathbf t\cdot\mathbf t=1$$
the normal vector $~\mathbf n$ is
$$\mathbf n=\begin{bmatrix}
\mathbf{t}_2\\
-\mathbf{t}_1 \\
\end{bmatrix}$$
hence
$$ a_t(s)=\mathbf a\cdot \mathbf t\tag 2$$
$$ a_n(s)=\mathbf a\cdot \mathbf n\tag 3$$
where $~a_t(s)~,a_n(s)~$ are the given trajectory tangential and normal accelerations
from equation (2) and (3) you obtain two second order differential equations $~\left(\frac{d^2}{ds^2}x(s)=...~,\frac{d^2}{ds^2}y(s)=...\right)~$ which you can solve to obtain $~x(s)~,y(s)$
$${a_t(s)}=\sqrt { \left( {\frac {d}{ds}}x \left( s \right) \right) ^{
2}+ \left( {\frac {d}{ds}}y \left( s \right) \right) ^{2}}a_{{s}}+{
\frac { \left( \left( {\frac {d}{ds}}x \left( s \right) \right) {
\frac {d^{2}}{d{s}^{2}}}x \left( s \right) + \left( {\frac {d}{ds}}y
\left( s \right) \right) {\frac {d^{2}}{d{s}^{2}}}y \left( s
\right) \right) {v_{{s}}}^{2}}{\sqrt { \left( {\frac {d}{ds}}x
\left( s \right) \right) ^{2}+ \left( {\frac {d}{ds}}y \left( s
\right) \right) ^{2}}}}
$$
$$a_n(s)=-{\frac {{v_{{s}}}^{2} \left( - \left( {\frac {d}{ds}}y \left( s
\right) \right) {\frac {d^{2}}{d{s}^{2}}}x \left( s \right) +
\left( {\frac {d}{ds}}x \left( s \right) \right) {\frac {d^{2}}{d{s}
^{2}}}y \left( s \right) \right) }{\sqrt { \left( {\frac {d}{ds}}x
\left( s \right) \right) ^{2}+ \left( {\frac {d}{ds}}y \left( s
\right) \right) ^{2}}}}
$$