$\newcommand{\bl}[1]{\boldsymbol{#1}}
\newcommand{\e}{\bl=}
\newcommand{\p}{\bl+}
\newcommand{\m}{\bl-}
\newcommand{\gr}{\bl>}
\newcommand{\les}{\bl<}
\newcommand{\greq}{\bl\ge}
\newcommand{\leseq}{\bl\le}
\newcommand{\plr}[1]{\left(#1\right)}
\newcommand{\blr}[1]{\left[#1\right]}
\newcommand{\lara}[1]{\langle#1\rangle}
\newcommand{\lav}[1]{\langle#1|}
\newcommand{\vra}[1]{|#1\rangle}
\newcommand{\lavra}[2]{\langle#1|#2\rangle}
\newcommand{\lavvra}[3]{\langle#1|\,#2\,|#3\rangle}
\newcommand{\vp}{\vphantom{\dfrac{a}{b}}}
\newcommand{\hp}[1]{\hphantom{#1}}
\newcommand{\x}{\bl\times}
\newcommand{\qqlraqq}{\qquad\bl{-\!\!\!-\!\!\!-\!\!\!\longrightarrow}\qquad}
\newcommand{\qqLraqq}{\qquad\boldsymbol{\e\!\e\!\e\!\e\!\Longrightarrow}\qquad}
\newcommand{\tl}[1]{\tag{#1}\label{#1}}$
The results of OP are wrong. More precisely if
\begin{equation}
\mathrm\Xi\e
\begin{bmatrix}
\hp\m 2&\m1&\hp\m 0&\cdots&\hp\m 0&\hp\m 0\hp\m\\
\m1 &\hp\m 2&\m1&\cdots&\hp\m 0&\hp\m 0\hp\m\\
\hp\m 0&\m1&\hp\m 2&\cdots&\hp\m 0 &\hp\m 0\hp\m\\
\hp\m\vdots &\hp\m\vdots &\hp\m\vdots&\cdots &\hp\m \vdots&\hp\m\vdots\hp\m\\
\hp\m 0&\hp\m 0&\hp\m 0&\cdots&\hp\m 2&\m1\hp\m\\
\hp\m 0&\hp\m 0&\hp\m 0&\cdots&\m1&\hp\m 2\hp\m
\end{bmatrix}
\tag{01}\label{01}
\end{equation}
is a $\:n\times n\:$ symmetric Toeplitz matrix, its eigenvalues are not those of the OP
\begin{equation}
\lambda_\rho\e\rho\,, \qquad \rho\e1,2,3,\cdots n \qquad\qquad \texttt{(wrong)}
\tag{02}\label{02}
\end{equation}
but
\begin{equation}
\xi_\rho\e 4\sin^{2}\blr{\rho\dfrac{\pi}{2\plr{n\p1}}}\e 2\Bigg(1\m\cos\left[ \rho\dfrac{\pi}{\plr{n\p1}} \right]\Bigg), \quad \rho\e 1,2,\cdots, n
\tag{03}\label{03}
\end{equation}
$\bl{=\!=\!=\!=\!=\!=\!=\!=\!=\!=\!=\!=\!=\!=\!=\!=\!=\!=\!=\!=\!=\!=\!=\!=\!=\!=\!=\!=\!=\!=\!=\!=\!=\!=\!}$
Counterexample 1 : Consider the $\:2\times 2\:$ symmetric Toeplitz matrix \begin{equation}
\mathrm\Xi\e
\begin{bmatrix}
\hp\m 2&\m1\hp\m\vp\\
\m1 &\hp\m 2\hp\m\vp
\end{bmatrix}
\tag{04}\label{04}
\end{equation}
According to the OP results its eigenvalues are
\begin{equation}
\lambda_1\e 1\,, \qquad \lambda_2\e 2 \qquad\qquad \texttt{(wrong)}
\tag{05}\label{05}
\end{equation}
instead of
\begin{equation}
\begin{split}
\xi_1 & \e 4\sin^{2}\plr{\dfrac{\pi}{6}}\e 1 \\
\xi_2 & \e 4\sin^{2}\plr{\dfrac{\pi}{3}}\e 3
\end{split}
\tag{06}\label{06}
\end{equation}
in agreement with equation \eqref{03}.
$\bl{=\!=\!=\!=\!=\!=\!=\!=\!=\!=\!=\!=\!=\!=\!=\!=\!=\!=\!=\!=\!=\!=\!=\!=\!=\!=\!=\!=\!=\!=\!=\!=\!=\!=\!}$
Counterexample 2 : Consider the $\:3\times 3\:$ symmetric Toeplitz matrix \begin{equation}
\mathrm\Xi\e
\begin{bmatrix}
\hp\m 2&\m1&\hp\m0\hp\m\vp\\
\m 1 &\hp\m 2&\m1\hp\m\vp\\
\hp\m 0 &\m 1&\hp\m 2\hp\m\vp
\end{bmatrix}
\tag{07}\label{07}
\end{equation}
According to the OP results its eigenvalues are
\begin{equation}
\lambda_1\e 1\,, \qquad \lambda_2\e 2\,, \qquad \lambda_3\e 3 \qquad\qquad \texttt{(wrong)}
\tag{08}\label{08}
\end{equation}
instead of
\begin{equation}
\begin{split}
\xi_1 & \e 4\sin^{2}\plr{\,\dfrac{\pi}{8}\,}\e 2\Bigg[1\m\cos\left(\,\dfrac{\pi}{4}\,\right)\Bigg]\e 2\m\sqrt{2} \\
\xi_2 & \e 4\sin^{2}\plr{\,\dfrac{\pi}{4}\,}\e2\Bigg[1\m\cos\left(\,\dfrac{\pi}{2}\,\right)\Bigg]\e 2\\
\xi_3 & \e 4\sin^{2}\plr{\!\dfrac{3\pi}{8}\!}\e 2\Bigg[1\m\cos\left(\!\dfrac{3\pi}{4}\! \right)\!\Bigg]\e 2\p\sqrt{2} \\
\end{split}
\tag{09}\label{09}
\end{equation}
in agreement with equation \eqref{03}.
Note that
\begin{equation}
\lambda_1\lambda_2\lambda_3\e 1\cdot 2 \cdot 3 \e 6 \bl\ne 4\e \det\plr{\mathrm\Xi}
\tag{10}\label{10}
\end{equation}
while
\begin{equation}
\xi_1\xi_2\xi_3\e \plr{2\m\sqrt{2}}\cdot 2\cdot\plr{2\p\sqrt{2}} \e 4\e \det\plr{\mathrm\Xi}
\tag{11}\label{11}
\end{equation}
An other check is
\begin{equation}
\sum\limits_{\rho\e 1}^{\rho\e n}\lambda_\rho\e\sum\limits_{\rho\e 1}^{\rho\e n}\rho\e\dfrac{n\plr{n\p1}}{2}\bl\ne 2n\e \texttt{Trace}\plr{\mathrm\Xi}
\tag{12}\label{12}
\end{equation}