Let $G$ be a finite group. Two irreducible complex representations $V,V'$ of $G$ are called dual to each other if $V \otimes V'$ admits a trivial component, i.e. $\hom_G(V \otimes V',V_0)$ is positive dimensional (thus one-dimensional) with $V_0$ the trivial representation. Then the representation $V'$ is denoted $V^*$ (and $V \simeq V^{**}$).
Let $V, W$ be irreducible complex representations of $G$ such that:
- $W^* \simeq W$,
- $\hom_G(V \otimes V^*,W)$ is odd-dimensional.
Question: Is it true that the Frobenius-Schur indicator of $W$ is equal to $1$?
The odd-dimensional assumption cannot be extended to even (see counterexamples in Appendix).
It is conjectured to be true for every pivotal fusion category, see [a, Conjecture 4.26]. See also [b] and [c].
References
[a] Z. Wang, Topological quantum computation, CBMS Reg. Conf. Ser. Math. (112) xiii + 115pp, (2010).
[b] G. Mason, A brief history of the positivity conjecture in tensor category theory. Bull. Inst. Math. Acad. Sin. (N.S.) 14 (2019), no. 2, 149--153
[c] J. Fuchs; I. Runkel; C. Schweigert. A reason for fusion rules to be even. J. Phys. A 35 (2002), no. 19, L255--L259.
Appendix
Smallest counterexample among the finite groups:
gap> G:=PSU(3,2);; Order(G);
72
gap> Indicator(CharacterTable(G),2);
[ 1, 1, 1, 1, -1, 1 ]
gap> M:=RepGroupFusionRing(G);;
gap> M[6][6]; # FS(V)=1
[ 1, 1, 1, 1, 2, 7 ]
Smallest counterexample among the finite simple groups:
gap> G:=PSU(3,5);; Order(G);
126000
gap> Indicator(CharacterTable(G),2);
[ 1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0 ]
gap> M:=RepGroupFusionRing(G);;
gap> M[8][8]; # FS(V)=1
[ 1, 2, 2, 3, 3, 3, 9, 9, 11, 11, 11, 11, 12, 12 ]
gap> M[11][12]; # FS(V)=0
[ 1, 2, 3, 4, 4, 4, 10, 13, 17, 17, 15, 15, 18, 18 ]
with the following code:
RepGroupFusionRing:=function(g)
local irr,n,M;
irr:=Irr(g);
n:=Size(irr);
M:=List([1..n],i->List([1..n],j->List([1..n],k->ScalarProduct(irr[i]*irr[j],irr[k]))));
return M;
end;;