17

The question is motivated by yet another possible approach to a combinatorial problem formulated previously in "Special" meanders. I'm not giving details of the connection as I believe the question is sufficiently motivated by itself.

I've got a vector space with basis $\left\{e_n\mid n\geqslant0\right\}$ and scalar product $$ \left\langle e_m,e_n\right\rangle=q^{\gcd(m,n)} $$ (with the convention $\gcd(0,n)=n$ for all $n\geqslant0$).

What I need is a maximally explicit expression for an orthogonal basis $\left\{o_n\mid n\geqslant0\right\}$ with respect to this scalar product. I do not mind if the $o_n$ are not of unit norm (and this is clearly a minor point anyway).

Here are the first few values (calculated with MAPLE). Up to arbitrary rescalings, \begin{align*} o_{{0}}&=e_{{0}}\\ o_{{1}}&=e_{{1}}-qe_{{0}}\\ o_{{2}}&=e_{{2}}- \left( q+1 \right) e_{{1}}+qe_{{0}}\\ o_{{3}}&=e_{{3}}-qe_{{2}}-e_{{1}}+qe_{{0}}\\ o_{{4}}&=\left( q+1 \right) e_{{4}}-{q}^{2}e_{{3}}- \left( {q}^{2}+q+1 \right) e_{{2}}+{q}^{2}e_{{1}}+{q}^{2}e_{{0}}\\ o_{{5}}&=\left( {q}^{2}+q+1 \right) e_{{5}}- \left( {q}^{2}+1 \right) qe_{{4}}- \left( {q}^{2}+1 \right) qe_{{3}}+ \left( {q}^{3}-{q}^{2}-1 \right) e_{{1}}+ \left( {q}^{2}+1 \right) qe_{{0}}\\ o_{{6}}&=\left( {q}^{3}+{q}^{2}+2\,q+1 \right) e_{{6}}- \left( {q}^{3} +q-1 \right) qe_{{5}}- \left( {q}^{3}+q-1 \right) qe_{{4}}\\&- \left( {q} ^{2}+1 \right) \left( {q}^{2}+q+1 \right) e_{{3}}- \left( {q}^{3}+{q} ^{2}+2\,q+1 \right) e_{{2}}+ \left( 2\,{q}^{4}+{q}^{3}+3\,{q}^{2}+1 \right) e_{{1}}+ \left( {q}^{3}+q-1 \right) qe_{{0}}\\ o_{{7}}&=\left( {q}^{2}+1 \right) e_{{7}}- \left( {q}^{2}-q+1 \right) qe_{{6}}- \left( {q}^{2}-q+1 \right) qe_{{5}}- \left( {q}^{2}-q+1 \right) qe_{{4}}\\&+ \left( {q}^{2}-q+1 \right) qe_{{2}}+ \left( {q}^{3} -2\,{q}^{2}+q-1 \right) e_{{1}}+ \left( {q}^{2}-q+1 \right) qe_{{0}} \end{align*}

The inverse transformation (again up to rescalings) does not look any more enlightening (except that everything is positive):

\begin{align*} e_{{0}}&=o_{{0}}\\ e_{{1}}&=o_{{1}}+qo_{{0}}\\ e_{{2}}&=o_{{2}}+ \left( q+1 \right) o_{{1}}+{q}^{2}o_{{0}}\\ e_{{3}}&=o_{{3}}+qo_{{2}}+ \left( {q}^{2}+q+1 \right) o_{{1}}+{q}^{3}o_ {{0}}\\ e_{{4}}&=o_{{4}}+{\frac {{q}^{2}}{q+1}}o_{{3}}+ \left( {q}^{2}+1 \right) o_{{2}}+ \left( q+1 \right) \left( {q}^{2}+1 \right) o_{{1}} +{q}^{4}o_{{0}}\\ e_{{5}}&=o_{{5}}+{\frac { \left( {q}^{2}+1 \right) q}{{q}^{2}+q+ 1}}o_{{4}}+{\frac {q \left( {q}^{2}+1 \right)}{q+1}} o_{{3}}+q \left( {q}^{2} +1 \right) o_{{2}}+ \left( {q}^{4}+{q}^{3}+{q}^{2}+q+1 \right) o_{{1}} +{q}^{5}o_{{0}}\\ e_{{6}}&=o_{{6}}+{\frac { \left( {q}^{3}+q-1 \right) q}{{q}^{3}+ {q}^{2}+2\,q+1}}o_{{5}}+{\frac { \left( {q}^{3}+q-1 \right) q}{{q}^{2} +q+1}}o_{{4}}+{\frac { \left( {q}^{2}+q+1 \right) \left( {q}^{2}-q+1 \right)}{q+1}} o_{{3}}\\ &+ \left( {q}^{2}+q+1 \right) \left( {q}^{2}-q+ 1 \right) o_{{2}}+ \left( q+1 \right) \left( {q}^{2}+q+1 \right) \left( {q}^{2}-q+1 \right) o_{{1}}+{q}^{6}o_{{0}}\\ e_{{7}}&=o_{{7}}+{\frac { \left( {q}^{2}-q+1 \right) q}{{q}^{2}+ 1}}o_{{6}}+{\frac { \left( {q}^{2}+q+1 \right) \left( {q}^{2}-q+1 \right) q}{{q}^{3}+{q}^{2}+2\,q+1}}o_{{5}}+ \left( {q}^{2}-q+1 \right) qo_{{4}}\\ &+{\frac {q \left( {q}^{2}+q+1 \right) \left( {q}^{2}-q+1 \right)}{q+1}}o_{{3}} +q \left( {q}^{2}+q+1 \right) \left( {q}^{2}-q+1 \right) o_{{2}} + \left( {q}^{6}+{q}^{5}+{q}^{4}+{q}^{3}+{q}^{2}+q+1 \right) o_{{1}}+{q}^{7}o_{{0}}\\ e_{{8}}&=o_{{8}}+{\frac { \left( {q}^{2}+1 \right) {q}^{4}}{ \left( {q}^{2}+q+1 \right) \left( {q}^{3}+q+1 \right) }}o_{{7}}+{\frac {{q} ^{4}}{{q}^{2}+q+1}}o_{{6}}+{\frac { \left( {q}^{2}+1 \right) {q}^{4}}{{q}^{3}+{q}^{2}+2\,q+1}}o_{{5}}\\ &+{\frac { {q}^{6}+{q}^{4}+{q}^{2}+q+1 }{{q}^{2}+q+1}}o_{{4}} +{\frac {{q}^{2} \left( {q}^{2}+q+1 \right) \left( {q}^{2}-q+1 \right)}{q+1}}o_{{3}}+ \left( {q}^{2}+1\right) \left( {q}^{4}+1 \right) o_{{2}}+ \left( q+1 \right) \left( {q}^{2}+1 \right) \left( {q}^{4}+1 \right) o_{{1}}+{q}^{8}o_{ {0}} \end{align*}

There are some patterns, but I cannot even guess any statement that I could try to prove about these coefficients. Also the above was computed under the assumption that the transformation matrix is triangular, i. e. that $o_n$ only depends on $e_k$ with $k\leqslant n$. It is quite possible that there is a nicer basis which violates this assumption, but again I cannot think of any natural alternative form of the transformation matrix.

What I know is an explicit orthogonal basis for a similar scalar product "without $q$": if I would have just $\left\langle e_m,e_n\right\rangle=\gcd(m,n)$, then an orthogonal basis would be given by $e_n=\sum_{d|n}o_d$, so $o_n=\sum_{d|n}\mu\left(\frac nd\right)e_d$. Strangely enough, I obtain this from the above by substituting $q=0$, and again I have no idea why.

As @alpoge points out in a comment, if one removes $e_0$, then this actually works "with $q$" too.

PS As suggested by @Wolfgang in a comment, I've looked at polynomials resulting from the substitutions $q=\pm1$, $e_n=x^n$. Here:

$q=1$: \begin{align*} &1\\ &x-1\\ & \left( x-1 \right) ^{2}\\ & \left( x+1 \right) \left( x-1 \right) ^{2}\\ & \left( x+1 \right) \left( 2\,x+1 \right) \left( x-1 \right) ^{2}\\ & \left( x+1 \right) \left( 3\,{x}^{2}+x+2 \right) \left( x-1 \right) ^{2}\\ & \left( x+1 \right) \left( 5\,{x}^{3}+4\,{x}^{2}+8\,x+1 \right) \left( x-1 \right) ^{2}\\ & \left( x+1 \right) \left( {x}^{2}+x+1 \right) \left( 2\,{x}^{2}-x+1 \right) \left( x-1 \right) ^{2}\\ & \left( x+1 \right) \left( 9\,{x}^{5}+7\,{x}^{4}+14\,{x}^{3}+10\,{x}^ {2}+6\,x+2 \right) \left( x-1 \right) ^{2}\\ & \left( x+1 \right) \left( 11\,{x}^{6}+8\,{x}^{5}+16\,{x}^{4}+10\,{x} ^{3}+15\,{x}^{2}+9\,x+3 \right) \left( x-1 \right) ^{2}\\ & \left( x+1 \right) \left( 7\,{x}^{5}+6\,{x}^{4}+5\,{x}^{3}+4\,{x}^{2 }+10\,x+1 \right) \left( {x}^{2}+1 \right) \left( x-1 \right) ^{2}\\ & \left( x+1 \right) \left( 16\,{x}^{8}+11\,{x}^{7}+22\,{x}^{6}+12\,{x }^{5}+18\,{x}^{4}+3\,{x}^{3}+9\,{x}^{2}-6\,x+5 \right) \left( x-1 \right) ^{2}\\ & \left( x+1 \right) \left( 21\,{x}^{9}+19\,{x}^{8}+38\,{x}^{7}+34\,{x }^{6}+51\,{x}^{5}+45\,{x}^{4}+39\,{x}^{3}+33\,{x}^{2}+6\,x+2 \right) \left( x-1 \right) ^{2} \end{align*} $q=-1$: \begin{align*} 0&:1\\ 1&:1+x\\ 2&:\left( x-1 \right) \left( 1+x \right)\\ 3&:\left( x-1 \right) \left( 1+x \right) ^{2}\\ 4&:- \left( x-1 \right) \left( 1+x \right) ^{2}\\ 5&:\left( x-1 \right) \left( {x}^{2}+x+2 \right) \left( 1+x\right) ^{2}\\ 6&:-\left( x-1 \right) \left( {x}^{3}+2\,{x}^{2}+2\,x+3 \right) \left( 1+x \right) ^{2}\\ 7&:\left( x-1 \right) \left( {x}^{2}+x+1 \right) \left( 2\,{x}^{2}- x+3 \right) \left( 1+x \right) ^{2}\\ 8&:-\left( x-1 \right) \left( {x}^{4}+2\,{x}^{2}+2 \right) \left( 1 +x \right) ^{3}\\ 9&:\left( x-1 \right) \left( {x}^{5}+{x}^{4}+{x}^{3}+3\,{x}^{2}+3 \right) \left( 1+x \right) ^{3}\\ 10&:- \left( x-1 \right) \left( {x}^{2}+1 \right) \left( {x}^{5}+2\, {x}^{4}+{x}^{3}+2\,{x}^{2}+2\,x+3 \right) \left( 1+x \right) ^{2}\\ 11&:\left( x-1 \right) \left( 4\,{x}^{8}+{x}^{7}+8\,{x}^{6}+2\,{x}^{ 5}+12\,{x}^{4}+3\,{x}^{3}+11\,{x}^{2}+4\,x+5 \right) \left( 1+x \right) ^{2} \end{align*}

  • 1
    Have you tried putting $q=1$ and replacing $e_i$ by $x^i$ in the $o_j$ expressions? The resulting polynomials seem to split into linear and quadratic factors, and maybe you'll find some patterns in those factors, which might give some ideas to start with. – Wolfgang Jun 30 '15 at 13:00
  • @Wolfgang Many thanks for the suggestion, sounds promising! I'll definitely try it – მამუკა ჯიბლაძე Jun 30 '15 at 13:01
  • @Wolfgang I've looked at it, what happens that seeminglu each of these polynomials (well, starting from 3) is divisible by $(x-1)^2(x+1)$, but the quotient seems impenetrable to me. I'll add it to the question though – მამუკა ჯიბლაძე Jun 30 '15 at 20:06
  • @OP: What is $\langle e_0,e_0\rangle$? It seems to me that the problem is not well formulated, as $gcd(0,0)=\infty$. In particular, I don't know how to interpret your assertion $0=\langle o_0,o_1\rangle=\langle e_0,e_1-qe_0\rangle=q-q\cdot q^{gcd(0,0)}$. – Peter Mueller Jun 30 '15 at 21:52
  • @PeterMueller I use $\gcd(0,0)=0$, I think it is not senseless in view of $\gcd(0,n)=\gcd(n,n)=n$ for all $n$. – მამუკა ჯიბლაძე Jul 01 '15 at 05:31
  • I had skipped $n=6 $, so that was a wrong conclusion of mine! :(. – Wolfgang Jul 01 '15 at 07:18
  • and I suppose the same with $q=-1$ doesn't reveal more either? – Wolfgang Jul 01 '15 at 07:23
  • @Wolfgang Well $q=-1$ looks somehow less hopeless but still I have no clue :) I'll add it too – მამუკა ჯიბლაძე Jul 01 '15 at 17:59
  • 5
    Formally doesn't $o_n := \sum_{d\vert n} \mu(d) e_{n/d}$ for $n > 0$ and $o_0 := e_0 - \sum_{n\geq 1} o_n$ work? (Not that that helps much, since the expression for $o_0$ is nonsense.) – alpoge Jul 01 '15 at 21:06
  • 2
    Just a remark\restatement, nothing fancy: Let $A_{i,j} = q^{(i,j)}$ be a $(n+1) \times(n+1)$ matrix. Decompose $A$ as $B^T B$ (Cholesky-Decomposition; $B$ can be upper-triangular). The condition that $o_i = \sum_{j} o_{i,j} e_j$ are orthonormal w.r.t to the given inner product is the same as requiring that $B o_i$ are orthonormal w.r.t to the ordinary inner product, so we can take $o_i = B^{-1} e_i$. Hence the problem reduces to Cholesky-decomposing $A$, and inverting.

    Bruce Sagan's talk here about GCD-matrices might provide useful input: http://users.math.msu.edu/users/sagan/Slides/mfp5.pdf

    – Ofir Gorodetsky Jul 01 '15 at 21:55
  • 1
    @alpoge But this is great! I was sticking to $e_0$ so much it never occurred to me that dropping it gives such a nice orthogonal basis! It is true that I still need $e_0$ essentially (it is the unit of certain algebra), but your version does almost all of it. Could you please post this as an answer? It's worth it in any case, and if nobody will find a way to incorporate $e_0$ I will go for it – მამუკა ჯიბლაძე Jul 02 '15 at 02:45
  • 1
    @OfirGorodetsky Thanks for the link! Reading that - seems an interesting idea to give it a combinatorial interpretation in terms of the Möbius function of some poset. In fact this might be important for the original problem which is of combinatorial nature. – მამუკა ჯიბლაძე Jul 02 '15 at 02:49

0 Answers0