Prove the relationship of the equation that : $$ P_n^{-m}(x)=(-1)^m\frac{(n-m)!}{(n+m)!}P_n^{m}(x) -------> equation (1)$$
This is what I know: $$ P_n^{m}(x)=\frac{1}{2^nn!}(1-x^2)^{\frac{m}{2}}\frac{d^{n+m}}{dx^{n+m}}(x^2-1)^n$$
Leibnitz's formula:
$$\frac{d^{n}}{dx^{n}}(A(x)B(x))=\sum_{s=0}^n \binom{n}{s}\frac{d^{n-s}}{dx^{n-s}}A(x)\frac{d^{s}}{dx^{s}}B(x)$$ and $$\binom{n}{s}=\frac{n!}{(n-s)!s!}$$
then
$$\frac{d^{n+m}}{dx^{n+m}}(x^2-1)^n=\frac{d^{n+m}}{dx^{n+m}}(x-1)^n(x+1)^n=\sum_{s=0}^{n+m} \binom{n+m}{s}\frac{d^{n+m-s}}{dx^{n+m-s}}(x+1)^n\frac{d^{s}}{dx^{s}}(x-1)^n$$
$$\binom{n+m}{s}=\frac{(n+m)!}{(n+m-s)!s!}$$
$$ P_n^{-m}(x)=\frac{1}{2^nn!}(1-x^2)^{\frac{-m}{2}}\frac{d^{n-m}}{dx^{n-m}}(x^2-1)^n$$
$$\frac{d^{n-m}}{dx^{n-m}}(x^2-1)^n=\frac{d^{n-m}}{dx^{n-m}}(x-1)^n(x+1)^n=\sum_{s=0}^{n-m} \binom{n-m}{s}\frac{d^{n-m-s}}{dx^{n-m-s}}(x+1)^n\frac{d^{s}}{dx^{s}}(x-1)^n$$
$$\binom{n-m}{s}=\frac{(n-m)!}{(n-m-s)!s!}$$
$$ P_n^{m}(x)=\frac{1}{2^nn!}(1-x^2)^{\frac{m}{2}}\frac{d^{n+m}}{dx^{n+m}}(x^2-1)^n$$
$$\frac{1}{2^nn!}=P_n^{m}(x)(1-x^2)^{\frac{-m}{2}}\frac{1}{\sum_{s=0}^{n+m} \frac{(n-m)!}{(n-m-s)!s!}\frac{d^{n+m-s}}{dx^{n+m-s}}(x+1)^n\frac{d^{s}}{dx^{s}}(x-1)^n}$$
$$ P_n^{-m}(x)=P_n^{m}(x)(1-x^2)^{\frac{-m}{2}}\frac{\sum_{s=0}^{n-m} \frac{(n-m)!}{(n-m-s)!s!}\frac{d^{n-m-s}}{dx^{n-m-s}}(x+1)^n\frac{d^{s}}{dx^{s}}(x-1)^n}{\sum_{s=0}^{n+m} \frac{(n+m)!}{(n+m-s)!s!}\frac{d^{n+m-s}}{dx^{n+m-s}}(x+1)^n\frac{d^{s}}{dx^{s}}(x-1)^n}(1-x^2)^{\frac{-m}{2}}$$
$$ P_n^{-m}(x)=P_n^{m}(x)(1-x)^{-m}(1+x)^{-m}\frac{\sum_{s=0}^{n-m} \frac{(n-m)!}{(n-m-s)!s!}\frac{d^{n-m-s}}{dx^{n-m-s}}(x+1)^n\frac{d^{s}}{dx^{s}}(x-1)^n}{\sum_{s=0}^{n+m} \frac{(n+m)!}{(n+m-s)!s!}\frac{d^{n+m-s}}{dx^{n+m-s}}(x+1)^n\frac{d^{s}}{dx^{s}}(x-1)^n}$$
$$ P_n^{-m}(x)=P_n^{m}(x)\frac{(n-m)!}{(n+m)!}(1-x)^{-m}(1+x)^{-m}\frac{\sum_{s=0}^{n-m} \frac{1}{(n-m-s)!s!}\frac{d^{n-m-s}}{dx^{n-m-s}}(x+1)^n\frac{d^{s}}{dx^{s}}(x-1)^n}{\sum_{s=0}^{n+m} \frac{1}{(n+m-s)!s!}\frac{d^{n+m-s}}{dx^{n+m-s}}(x+1)^n\frac{d^{s}}{dx^{s}}(x-1)^n}$$
$$ P_n^{-m}(x)=P_n^{m}(x)\frac{(n-m)!}{(n+m)!}(-1)^{-m}(x-1)^{-m}(x+1)^{-m}\frac{\sum_{s=0}^{n-m} \frac{1}{(n-m-s)!s!}\frac{d^{n-m-s}}{dx^{n-m-s}}(x+1)^n\frac{d^{s}}{dx^{s}}(x-1)^n}{\sum_{s=0}^{n+m} \frac{1}{(n+m-s)!s!}\frac{d^{n+m-s}}{dx^{n+m-s}}(x+1)^n\frac{d^{s}}{dx^{s}}(x-1)^n}$$
but $$(-1)^{-m}=(-1)^m $$ therefore,
$$ P_n^{-m}(x)=P_n^{m}(x)\frac{(n-m)!}{(n+m)!}(-1)^{m}(x-1)^{-m}(x+1)^{-m}\frac{\sum_{s=0}^{n-m} \frac{1}{(n-m-s)!s!}\frac{d^{n-m-s}}{dx^{n-m-s}}(x+1)^n\frac{d^{s}}{dx^{s}}(x-1)^n}{\sum_{s=0}^{n+m} \frac{1}{(n+m-s)!s!}\frac{d^{n+m-s}}{dx^{n+m-s}}(x+1)^n\frac{d^{s}}{dx^{s}}(x-1)^n}$$
$$ P_n^{-m}(x)=P_n^{m}(x)\frac{(n-m)!}{(n+m)!}(-1)^{m}\frac{\sum_{s=0}^{n-m} \frac{1}{(n-m-s)!s!}\frac{d^{n-m-s}}{dx^{n-m-s}}(x+1)^{n-m}\frac{d^{s}}{dx^{s}}(x-1)^{n-m}}{\sum_{s=0}^{n+m} \frac{1}{(n+m-s)!s!}\frac{d^{n+m-s}}{dx^{n+m-s}}(x+1)^n\frac{d^{s}}{dx^{s}}(x-1)^n}$$
and that leads to $$ P_n^{-m}(x)=(-1)^m\frac{(n-m)!}{(n+m)!}P_n^{m}(x)A$$
where
$$A=\frac{\sum_{s=0}^{n-m} \frac{1}{(n-m-s)!s!}\frac{d^{n-m-s}}{dx^{n-m-s}}(x+1)^{n-m}\frac{d^{s}}{dx^{s}}(x-1)^{n-m}}{\sum_{s=0}^{n+m} \frac{1}{(n+m-s)!s!}\frac{d^{n+m-s}}{dx^{n+m-s}}(x+1)^n\frac{d^{s}}{dx^{s}}(x-1)^n} $$
This is almost the equation (1) derived except for variable A. Is A equal to 1? My problem is that I do not know how to evaluate multiderivative and go further to prove the relationship. Thank you in advance.