I'm unable to understand the proof behind determining the Moment Generating Function of a Poisson which is given below: $N \sim \mathrm{Poiss}(\lambda)$ $$ E[e^{\theta N}] = \sum\limits_{k=0}^\infty e^{\theta k} \frac{e^{-\lambda}\lambda^k }{k!} = e^ {\lambda[e^{\theta}-1]} $$
Edit: Q.1 I don't understand how we go from $E[e^{\theta N}] = \sum\limits_{k=0}^\infty e^{\theta k} \frac{e^{-\lambda}\lambda^k }{k!}$. Q.2 Also, I didn't know how it goes from $\sum\limits_{k=0}^\infty \frac{(\mathrm e^{\theta}\lambda)^k }{k!} = \mathrm e^ {-\lambda}\,\mathrm e^{\mathrm e^\theta \lambda}$
Thank You