Draw a grid of $1 \times 1$ squares on the floor and number them as follows:
\begin{bmatrix}1&i&-1&-i&1&i&-1&-i& \cdots \\ i&-1&-i&1&i&-1&-i&1& \cdots \\ -1&-i&1&i&-1&-i&1&i& \cdots \\ -i&1&i&-1&-i&1&i&-1& \cdots \\ 1&i&-1&-i&1&i&-1&-i& \cdots \\ i&-1&-i&1&i&-1&-i&1& \cdots \\ -1&-i&1&i&-1&-i&1&i& \cdots \\ -i&1&i&-1&-i&1&i&-1& \cdots \\ \vdots & \vdots & \vdots& \vdots& \vdots& \vdots& \vdots& \vdots & \ddots\end{bmatrix}
Define a tile's "tile-sum" as the sum of the numbers it covers.
Each $1 \times 4$ tile has a tile-sum of $0$ no matter how it is placed.
Each $2 \times 2$ tile can have a tile-sum of $2$, $2i$, $-2$, or $-2i$ depending on where it is placed.
The sum of the tile-sums of all the tiles is $(1+i+\cdots+i^{m-1})(1+i+\cdots+i^{n-1}) = \dfrac{(1-i^m)(1-i^n)}{(1-i)^2} = \dfrac{i}{2}(1-i^m)(1-i^n)$
If $m$ or $n$ is a multiple of $4$, then the sum of tile-sums is $0$. Thus, we need $a$ tiles with tile-sum $2$, $a$ tiles with tile-sum $-2$, $b$ tiles with tile-sum $2i$, and $b$ tiles with tile-sum $-2i$. Thus, the total number of $2 \times 2$ tiles is $2(a+b)$ which is even.
If $m$ and $n$ are both $2 \pmod 4$, then the sum of tile-sums is $2i$. Thus, we need $a$ tiles with tile-sum $2$, $a$ tiles with tile-sum $-2$, $b+1$ tiles with tile-sum $2i$, and $b$ tiles with tile-sum $-2i$. Thus, the total number of $2 \times 2$ tiles is $2(a+b)+1$ which is odd.
If $m$ and $n$ are both not multiples of $4$ and only one is a multiple of $2$, then you can't tile the floor.
Therefore, given an $m \times n$ floor, the pairity of the number of $2 \times 2$ tiles needed is constant. Do you see the problem?