I'm asked to prove that$$P_{2n}(0)=(-1)^n\frac{1\cdot3\cdots(2n-1)}{2\cdot 4\cdots (2n)}$$ given that $$\frac{1}{\sqrt{1-2xu+u^2}}=\sum_{n=0}^\infty P_n(x)u^n$$
I tried this:
Let $x=0$ and use $$(u^2+1)^{-1/2}=\sum_{m=0}^\infty \begin{pmatrix} -1/2 \\ m \end{pmatrix} u^{2m}$$ $$\sum_{m=0}^\infty \begin{pmatrix} -1/2 \\ m \end{pmatrix} u^{2m}=\sum_{n=0}^\infty P_n(0)u^n$$