Cauchy-Schwarz on real vector space: $| \langle u, v \rangle | = \| u \| \cdot \| v \| \iff u =\frac {\langle u, v \rangle} {\langle v, v \rangle} v$
Proving that $u =\frac {\langle u, v \rangle} {\langle v, v \rangle} v$ imply equality is easy by substitution of $u$.
However, I cannot prove that equality holds imply $u =\frac {\langle u, v \rangle} {\langle v, v \rangle} v$.
Can someone help me out ?