Show that $f(x):=\sqrt{\lvert x\rvert}$ belongs to $C^{0,\frac{1}{2}}(\mathbb{R})$.
Hello, when I got it right, I have to show four things:
(1) $f\in C(\mathbb{R})$
(2) $f\in C(\overline{B_R(0)})$ for all $R>0$
(3) $$ \sup\limits_{x,y\in\overline{B_R(0)}), x\neq y}\left\{\frac{\lvert f(x)-f(y)\rvert}{\lvert x-y\rvert^{\frac{1}{2}}}\right\}<\infty $$
(4) $f$ uniform continious in $B_R(0)$ for all $R>0$
Am I right?