We have, $ab=(a+b)c$. Then $$a+b=(a/m)(b/n)=a^\prime b^\prime$$ where $a=ma^\prime ,b=nb^\prime$ and $c=mn$.
Now, let a prime $p\mid a^\prime$. Then, $p\mid a$ and hence $p\mid b$. If $p\mid n$, then $p\mid c$ but this is a contradiction. Hence $p\mid b^\prime$. Similarly, if a prime $p\mid b^\prime$ then $p\mid a^\prime$.
Hence, $a^\prime$ and $b^\prime$ has same prime factors. Now suppose for some prime $p$, let $r,s$ (with $r<s$) be the highest exponents such that $p^r\mid a^\prime$ and $p^s\mid b^\prime$. Then $p^s\mid a^\prime b^\prime, p^s\mid b$. Now if $p^s \mid a$ then $p\mid m$, but then $p\mid c$ but this contradicts $\gcd (a,b,c)=1$. Hence prime factorizations of $a^\prime$ and $b^\prime$ are same and hence $a+b$ is square.