This is a question which is related to a previous one. It is about the proof of Theorem 0.7.10 in this PhD-Thesis. The question reduces to the following. Let $M=(E,\mathcal{A})$ be a matroid, that is:
A matroid $M$ is a pair $(E,\mathcal{A})$ of a finite set $E$ and a set $\mathcal{A}\subset 2^E$ s.t.
- $E\in\mathcal{A}$
- If $X,Y\in\mathcal{A}$ then $X\cap Y\in\mathcal{A}$
- For all $X,Y\in\mathcal{A},e\in E\backslash (X\cup Y)$, and $f\in X\backslash Y$ there exists $Z\in\mathcal{A}$ such that $e\in Z,f\notin Z$, and $X\cap Y\subset Z$.
An oriented matroid $\mathcal{M}$ is a pair $(E,\mathcal{F})$ of a finite set $E$ and a set $\mathcal{F}\subset\{-,+,0\}^E$ of sign vectors or covectors with some properties (can be found on page 21.). For a given oriented matroid $\mathcal{M}=(E,\mathcal{F})$ we can associate a matroid by $\underline{M}=(E,\{X^0|X\in\mathcal{F}\}$, where $X^0=\{e\in E|X_e=0\}$. The composition of $X$ and $Y$, denoted by $X\circ Y$ is given by $(X\circ Y)_e=X_e$ if $X_e\not=0$ and $Y_e$ otherwise. Furthermore we write $X\le Y$ if $X_e\not= 0$ implies $X_e=Y_e$ and $X<Y$ if $X\le Y$ and $X\not= Y$. And last we set $D(X,Y):=\{e\in E|X_e=-Y_e\not= 0\}$. All these things can be found on page 21.
For $S\subset E$, we define the span of $S$ as $$\operatorname{span}_M(S)=\cap_{X\in\mathcal{A},S\subset X} X$$ We denote the span by $\overline{S}$. Moreover we call a set $S\subset E$ independent if $\overline{S\backslash e}\not= \overline{S},\forall e\in E$. A basis $B$ of a subset $S\subset E$ is a maximal independent subset of $S$. One can prove that all bases have the same cardinality for a matroid. Let $M=(E,\mathcal{A})$ be a matroid. The uniquely determined cardinality of a basis of $X\in\mathcal{A}$ is called the rank of $X$ in $M$, denoted by $\operatorname{rank}_M(X)$. For a oriented matroid $\mathcal{M}=(E,\mathcal{F})$, we define $\operatorname{rank}(\mathcal{M}):=\operatorname{rank}_M(E)$ and for $X\in\mathcal{F}$, $\operatorname{rank}(X):=\operatorname{rank}(\mathcal{M})-\operatorname{rank}_{\underline{\mathcal{M}}}(X^0)$ (see above for the associated matroid $\underline{M}$). I have two question about this rank function:
- Let $M=(E,\mathcal{F})$ be an oriented matroid, $X,Y\in\mathcal{F}$ with $X<Y$ why is $\operatorname{rank}(X)<\operatorname{rank}(Y)$?
- Let $E^0:=\{e\in E|X_e=0,\forall X\in\mathcal{F}\}$ and suppose there is a $X\in\mathcal{F}$ such that $X^0=E^0$. Why is $\operatorname{rank}_{\underline{\mathcal{M}}}(E^0)=0$?