Consider $\mathbb{CP}^1 =\frac{\mathbb{C}^2\setminus \{ 0\}}{\mathbb{C}^*}$, one dimensional projective Hilbert space. I was wondering if someone could help me about proving $\mathbb{CP}^1 \cong S^2$
Here $\mathbb{C}^*$ acts on $\mathbb{C}^2\setminus \{ 0\}$, so we can construct $\frac{\mathbb{C}^2\setminus \{ 0\}}{\mathbb{C}^*}$.