I stumbled upon an equation that could be an identity, but I'm not sure. $$ e^{a(\partial_x + f'(x))} e^{-a \partial_x} = e^{f(x+a) - f(x)} $$
The operator exponential can be understood as a power series $$ e^{a\partial_x} g(x) = (1 + a\partial_x + \frac{a^2}{2!} \partial_x^2 + \ldots) g(x) = g(x+a) $$
Let $X = a(\partial_x + f'(x))$ and $Y = -a \partial_x$. $$ [X,Y] = -a^2 [f'(x), \partial_x] = a^2 f''(x) \\ $$ $$ [X,[X,Y]] = -[Y,[X,Y]] = a^3 f^{(3)}(x) $$
I checked the first few terms of the BCH formula. \begin{align*} &X + Y + \frac{1}{2}[X,Y] + \frac{1}{12} [X,[X,Y]] - \frac{1}{12} [Y,[X,Y]] + \ldots \\ & \stackrel{\text{?}}{=} a f'(x) + \frac{a^2}{2!} f''(x) + \frac{a^3}{3!} f^{(3)}(x) + \ldots \\ &= f(x+a) - f(x) \end{align*}