The Lipschitz property part can be shown in a straight forward fashion:
$$|f(x) - f(y)|< |\sum_{k=1}^{\infty}\frac{(-1)^k}{k+|x|} - \sum_{k=1}^{\infty}\frac{(-1)^k}{k+|y|}| = |\sum_{k=1}^{\infty}\frac{(-1)^k(|x| - |y|)}{(k+|x|)(k+|y|)}|= |\sum_{k=1}^{\infty}\frac{(-1)^k}{(k+|x|)(k+|y|)}|\cdot ||x| - |y|| \leq |\sum_{k=1}^{\infty}\frac{(-1)^k}{(k+|x|)(k+|y|)}||\cdot|x-y|$$
Set $K: = \sum_{k=1}^{\infty}\frac{(-1)^k}{(k+|x|)(k+|y|)} < \sum_{k=1}^{\infty}\frac{1}{k^2} = \frac{\pi^2}{6}$. Thus, $f$ is a Lipschitz function.
Note that by this argument $f(x) := \sum_{k=1}^{n}\frac{(-1)^k}{k+|x|}$ is a Lipschitz function, and a sequence of $K$−
Lipschitz functions which converges pointwise, converge uniformly (see Given sequence of $L-$Lipschitz functions which converges pointwise, prove uniform convergence).