1

Question

Let $a,b,c>0: a^2+b^2+c^2=a+b+c.$ Prove that $$\color{black}{\frac{5abc+1}{4}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}-1\right)+6\ge \sqrt{5a^3+4}+\sqrt{5b^3+4}+\sqrt{5c^3+4}}.$$ I've tried to eliminate the radical by Cauchy-Schwarz$$\frac{5abc+1}{4}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}-1\right)+6\ge \sqrt{3}.\sqrt{5(a^3+b^3+c^3)+12}$$ But the rest is not easy to me. I am waiting some ideas and proofs.

Thanks for your help.

Updated editings: Until now, we recieved two proof by hand verified by Mathematica. Is there a simpler proof?

Dragon boy
  • 1
  • 16

3 Answers3

1

Update: Use a better bound.


Some thoughts.

We have, for all $x \ge 0$, $$\sqrt{5x^3 + 4} \le \frac{13}{8}x^2 - \frac34 x + \frac{17}{8}.$$ (Note: We have $\mathrm{RHS}^2 - \mathrm{LHS}^2 = \frac{169x^2 - 138x + 33}{64}(x - 1)^2 \ge 0$.)

It suffices to prove that $$\frac{5abc+1}{4}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}-1\right)+6 \ge \frac{13}{8}(a^2 + b^2 + c^2) - \frac34 (a + b + c) + \frac{51}{8}. \tag{1}$$ This inequality is true which can be proved by the pqr method. But my proof is not nice.

River Li
  • 37,323
1

Alternative proof.

By given condition, we can rewrite the OP as $$(ab+bc+ca)\left(5+\frac{1}{abc}\right)-5abc+23\ge 4\sum_{\mathrm{cyc}}\sqrt{5a^3+4}.$$ Or $$\frac{ab+bc+ca}{a+b+c}\left[5(a^2+b^2+c^2)+\frac{a^2+b^2+c^2}{abc}\right]-5abc+23\ge 4\sum_{\mathrm{cyc}}\sqrt{5a^3+4},$$ $$\iff\sum_{\mathrm{cyc}}{\left[\left(5a^2+\dfrac{a}{bc}\right)(ab+bc+ca)-5a^2bc+7a+8b+8c\right]}\ge 4(a+b+c)\sum_{\mathrm{cyc}}\sqrt{5a^3+4}.$$ Now, base on symmetrical principle we should try to prove $$\left(5a^2+\frac{a}{bc}\right)(ab+bc+ca)-5a^2bc+7a+8b+8c\ge 4(a+b+c)\sqrt{5a^3+4}. \tag{*}$$ Can you end it now ?


Indeed, the $(*)$ is equivalent to $$\left(5a^2+\dfrac{a}{bc}\right).\frac{a(b+c)}{a+b+c}+8\ge4\sqrt{5a^3+4}.$$ Notice that by AM-GM $$\frac{a(b+c)}{a+b+c}=\frac{1}{\dfrac{1}{a}+\dfrac{1}{b+c}}\ge \frac{2}{\dfrac{2}{a}+\dfrac{1}{\sqrt{bc}}}.$$ Hence, it is enough to prove$$\frac{5a^2+\dfrac{a}{bc}}{\dfrac{2}{a}+\dfrac{1}{\sqrt{bc}}}+4\ge2\sqrt{5a^3+4}.$$ Dividing both side by $a,$ we will prove $$ \frac{\dfrac{1}{bc}+5a}{\dfrac{1}{\sqrt{bc}}+\dfrac{2}{a}}+\dfrac{4}{a}\ge2\sqrt{5a+\dfrac{4}{a^2}}.$$ The last inequality is true by AM-GM$$ \frac{\dfrac{1}{bc}+5a}{\dfrac{1}{\sqrt{bc}}+\dfrac{2}{a}}+\dfrac{4}{a}= \frac{5a+\dfrac{4}{a^2}}{\dfrac{1}{\sqrt{bc}}+\dfrac{2}{a}}+\frac{1}{\sqrt{bc}}+\dfrac{2}{a}\ge2\sqrt{5a+\dfrac{4}{a^2}}.$$ The proof is done. Equality holds at $a=b=c=1.$

Dragon boy
  • 1
  • 16
TATA box
  • 1
  • 1
  • 5
  • 29
0

A sketch of the proof.

Let $a+b+c=3u$, $ab+ac+bc=3v^2$ and $abc=w^3$ and since by AM-GM $$\sum_{cyc}\sqrt{5a^3+4}\leq\frac{1}{2}\sum_{cyc}\left(\frac{5a^3+4}{2a+1}+2a+1\right),$$ it's enough to prove that $f(w^3)\geq0,$ where $f$ decreases.

Thus, by $uvw$ it's enough to prove $f(w^3)\geq0$ for equality case of two variables, which after homogenization and assuming $b=c=1$ gives: $$(a-1)^2\left(2a^{11}+4a^{10}+11a^9-3a^8-12a^7+84a^6+464a^5+684a^4+472a^3+352a^2+32a+96\right)\geq0,$$ which is obvious.

Can you get a full solution?