My second proof.
The desired inequality is written as
$$\sum_{\mathrm{cyc}} \sqrt{\frac{a + b + b^2}{3}} \ge 3. \tag{1}$$
We have $\frac{(a + b) + b^2}{3} \le \frac{3 + 3^2}{3} = 4$,
$\frac{(b + c) + c^2}{3} \le \frac{3 + 3^2}{3} = 4$, and $\frac{(c + a) + a^2}{3} \le \frac{3 + 3^2}{3} = 4$.
We use the following bound: for all $x\in [0, 4]$,
$$\sqrt x \ge \frac14 x + \frac98 - \frac{9}{16x + 8}. \tag{2}$$
(Note: $\mathrm{LHS}^2 - \mathrm{RHS}^2
= \frac{x(4 - x)(x - 1)^2}{4(2x + 1)^2}\ge 0$.)
Using (2), it suffices to prove that
$$\sum_{\mathrm{cyc}} \left(\frac14\cdot \frac{a + b + b^2}{3} + \frac98 - \frac{9}{16\cdot \frac{a + b + b^2}{3} + 8}\right) \ge 3. \tag{3}$$
After homogenization, letting $Q = (a + b + c)/3$, it suffices to prove that
$$\sum_{\mathrm{cyc}} \left(\frac14\cdot \frac{aQ + bQ + b^2}{3Q^2} + \frac98 - \frac{9}{16\cdot \frac{aQ + bQ + b^2}{3Q^2} + 8}\right) \ge 3 $$
or (after clearing the denominators)
\begin{align*}
&15\,{a}^{7}b+9\,{a}^{7}c+45\,{a}^{6}{b}^{2}-40\,{a}^{6}bc+156\,{a}^{6}
{c}^{2}+156\,{a}^{5}{b}^{3}-215\,{a}^{5}{b}^{2}c\\
&+46\,{a}^{5}b{c}^{2}+
288\,{a}^{5}{c}^{3}+267\,{a}^{4}{b}^{4}-247\,{a}^{4}{b}^{3}c-104\,{a}^
{4}{b}^{2}{c}^{2}-88\,{a}^{4}b{c}^{3}\\
&+267\,{a}^{4}{c}^{4}+288\,{a}^{3}
{b}^{5}-88\,{a}^{3}{b}^{4}c-288\,{a}^{3}{b}^{3}{c}^{2}-288\,{a}^{3}{b}
^{2}{c}^{3}-247\,{a}^{3}b{c}^{4}\\
&+156\,{a}^{3}{c}^{5}+156\,{a}^{2}{b}^{
6}+46\,{a}^{2}{b}^{5}c-104\,{a}^{2}{b}^{4}{c}^{2}-288\,{a}^{2}{b}^{3}{
c}^{3}-104\,{a}^{2}{b}^{2}{c}^{4}\\
&-215\,{a}^{2}b{c}^{5}+45\,{a}^{2}{c}^
{6}+9\,a{b}^{7}-40\,a{b}^{6}c-215\,a{b}^{5}{c}^{2}-247\,a{b}^{4}{c}^{3
}-88\,a{b}^{3}{c}^{4}\\
&+46\,a{b}^{2}{c}^{5}-40\,ab{c}^{6}+15\,a{c}^{7}+
15\,{b}^{7}c+45\,{b}^{6}{c}^{2}+156\,{b}^{5}{c}^{3}+267\,{b}^{4}{c}^{4
}\\
&+288\,{b}^{3}{c}^{5}+156\,{b}^{2}{c}^{6}+9\,b{c}^{7}\\
&\ge 0.\tag{4}
\end{align*}
The Buffalo Way (BW) kills it.
In detail, WLOG, assume that $c = \min(a, b, c)$ and let $b = c + s, a = c + t$ for $s, t \ge 0$. (4) is written as
\begin{align*}
&\left( 4374\,{s}^{2}-4374\,st+4374\,{t}^{2} \right) {c}^{6}\\
&+ \left(
6723\,{s}^{3}+6318\,{s}^{2}t-243\,s{t}^{2}+6723\,{t}^{3} \right) {c}^{
5}\\
&+ \left( 4725\,{s}^{4}+12825\,{s}^{3}t+12555\,{s}^{2}{t}^{2}+1890\,s
{t}^{3}+4725\,{t}^{4} \right) {c}^{4}\\
&+ \left( 1745\,{s}^{5}+8449\,{s}^
{4}t+16082\,{s}^{3}{t}^{2}+7658\,{s}^{2}{t}^{3}+1726\,s{t}^{4}+1745\,{
t}^{5} \right) {c}^{3}\\
&+ \left( 329\,{s}^{6}+2562\,{s}^{5}t+8124\,{s}^{
4}{t}^{2}+7084\,{s}^{3}{t}^{3}+2697\,{s}^{2}{t}^{4}+699\,s{t}^{5}+329
\,{t}^{6} \right) {c}^{2}\\
&+ ( 24s^{7}+335s^{6}t+1846s^
{5}t^{2}+2420s^{4}{t}^{3}+1601s^{3}{t}^{4}+523s^{2}{t}^{
5}+155st^{6}+24t^{7} ) c\\
&+9\,{s}^{7}t+156\,{s}^{6}{t}^{2}
+288\,{s}^{5}{t}^{3}+267\,{s}^{4}{t}^{4}+156\,{s}^{3}{t}^{5}+45\,{s}^{
2}{t}^{6}+15\,s{t}^{7}\\
&\ge 0. \tag{5}
\end{align*}
It is very easy to prove that all the coefficients of $c^6, c^5, c^4, c^3, c^2, c, c^0$ are non-negative.
We are done.