Consider the following model:
$\hat y = f(x_1, ..., x_n) + \delta$
$\hat x_i = x_i + \varepsilon _i, i=1,..,n$
where $\delta, \varepsilon _1, ..., \varepsilon _n$ are i.i.d. random variables with known $\mathbb E \delta = \mathbb E \varepsilon _i = 0$, $\mathbb V \delta = \sigma ^2 _\delta$, $\mathbb V \varepsilon _i = \sigma ^2$. The goal is to estimate $(x_1, ..., x_n)$ based on observations $(\hat x_1, ..., \hat x_n, \hat y)$.
In a simple case $f(x_1, ..., x_n) = \sum _i x_i$ and $\sigma ^2 _\delta < n \sigma ^2$ it seems like one can use $\hat y$ to improve estimation of $(x_1, ..., x_n)$. How can I construct an estimator in this case? In general $f$ case?