Problem. Let $x,y,z\ge 0: x^2+y^2+z^2=1.$ Find minimum $$P=\sqrt[3]{\frac{x}{x^3+2yz}}+\sqrt[3]{\frac{y}{y^3+2zx}}+\sqrt[3]{\frac{z}{z^3+2xy}}.$$
After check some special values of $x,y,z$, I think Min $P=\sqrt[3]{16}$ achieved at $(x,y,z)=\left(0,\dfrac{\sqrt{2}}{2},\dfrac{\sqrt{2}}{2}\right).$
I tried the following Holder (by a hint of Micheal Rozenberg): $$\sum_{cyc}\sqrt[3]{\frac{x}{x^3+2yz}}=$$ $$=\sqrt{\frac{\left(\sum\limits_{cyc}\sqrt[3]{\frac{x}{x^3+2yz}}\right)^3\sum\limits_{cyc}x^3(x^3+2yz)\left(y-\sqrt{\frac{yz}{2}}+z\right)^4}{\sum\limits_{cyc}x^3(x^3+2yz)\left(y-\sqrt{\frac{yz}{2}}+z\right)^4}}\geq$$ $$\geq\sqrt{\frac{\left(\sum\limits_{cyc}\left(2xy-x\sqrt{\frac{yz}{2}}\right)\right)^4}{\sum\limits_{cyc}x^3(x^3+2yz)\left(y-\sqrt{\frac{yz}{2}}+z\right)^4}}\geq\sqrt[3]{16},$$ where the last inequality helps to get a polynomial inequality. I checked and it seems true.
To end proof, we can used BW to verified but it is very ugly. I hope to see a simple idea. Thank you.