2

Problem: Let $a,b,c\ge0: ab+bc+ca>0$. Prove that: $$\sqrt{\frac{a}{4a^2+bc}}+\sqrt{\frac{b}{4b^2+ac}}+\sqrt{\frac{c}{4c^2+ba}}\ge \frac{\sqrt{2}}{\sqrt{a+b+c}}.$$

Here is my attempt:

My idea is using Holder inequality.WLOG, assume that $a+b+c=2$ and we prove $$\sqrt{\frac{a}{4a^2+bc}}+\sqrt{\frac{b}{4b^2+ac}}+\sqrt{\frac{c}{4c^2+ba}}\ge 1.$$

By Holder: $$\left(\sum\limits_{cyc}\dfrac{\sqrt{a}}{\sqrt{4a^2+bc}}\right)^2\left[\sum\limits_{cyc}a^2(b+c)^3(4a^2+bc)\right] \ge \left[\sum\limits_{cyc}a(b+c)\right]^3=8(ab+bc+ca)^3$$ It's enough to prove that: $$8(ab+bc+ca)^3 \ge a^2(b+c)^3(4a^2+bc)+b^2(a+c)^3(4b^2+ac)+c^2(b+a)^3(4c^2+ba).$$ But it is not true! For example, $b=c=0.3; a=1.4$ leads to wrong inequality. I hope we can find better idea. Thank you.

TATA box
  • 1
  • 1
  • 5
  • 29

1 Answers1

1

For $abc=0$ your inequality is obviously true.

Let $abc\neq0.$

Thus, we need to prove that: $$\sum_{cyc}\sqrt{\frac{\frac{1}{a}}{\frac{4}{a^2}+\frac{1}{bc}}}\geq\sqrt{\frac{2}{\sum\limits_{cyc}\frac{1}{a}}}$$ or $$\sum_{cyc}\frac{1}{\sqrt{a^2+4bc}}\geq\sqrt{\frac{2}{ab+ac+bc}}.$$ Now, by Holder $$\sum_{cyc}\frac{1}{\sqrt{a^2+4bc}}=\sqrt{\frac{\left(\sum\limits_{cyc}\frac{1}{\sqrt{a^2+4bc}}\right)^2\sum\limits_{cyc}(a^2+4bc)(b+c)^3(2a+b+c)^3}{\sum\limits_{cyc}(a^2+4bc)(b+c)^3(2a+b+c)^3}}\geq$$ $$\geq\sqrt{\frac{\left(\sum\limits_{cyc}(b+c)(2a+b+c)\right)^3}{\sum\limits_{cyc}(a^2+4bc)(b+c)^3(2a+b+c)^3}}\geq\sqrt{\frac{2}{ab+ac+bc}},$$ where the last inequality it's $$4(ab+ac+bc)\left(\sum_{cyc}(a^2+3ab)\right)^3\geq\sum\limits_{cyc}(a^2+4bc)(b+c)^3(2a+b+c)^3$$ or $$\sum_{sym}(11a^6b^2+46a^5b^3+38a^4b^4+14a^6bc+210a^5b^2c+562a^4b^3c+495a^4b^2c^2+800a^3b^3c^2)\geq0$$ and we are done.