Problem: Let $a,b,c\ge0: ab+bc+ca>0$. Prove that: $$\sqrt{\frac{a}{4a^2+bc}}+\sqrt{\frac{b}{4b^2+ac}}+\sqrt{\frac{c}{4c^2+ba}}\ge \frac{\sqrt{2}}{\sqrt{a+b+c}}.$$
Here is my attempt:
My idea is using Holder inequality.WLOG, assume that $a+b+c=2$ and we prove $$\sqrt{\frac{a}{4a^2+bc}}+\sqrt{\frac{b}{4b^2+ac}}+\sqrt{\frac{c}{4c^2+ba}}\ge 1.$$
By Holder: $$\left(\sum\limits_{cyc}\dfrac{\sqrt{a}}{\sqrt{4a^2+bc}}\right)^2\left[\sum\limits_{cyc}a^2(b+c)^3(4a^2+bc)\right] \ge \left[\sum\limits_{cyc}a(b+c)\right]^3=8(ab+bc+ca)^3$$ It's enough to prove that: $$8(ab+bc+ca)^3 \ge a^2(b+c)^3(4a^2+bc)+b^2(a+c)^3(4b^2+ac)+c^2(b+a)^3(4c^2+ba).$$ But it is not true! For example, $b=c=0.3; a=1.4$ leads to wrong inequality. I hope we can find better idea. Thank you.