Expanding on my comment, the following proves the more general statement.
Let $P(w)$ be a complex polynomial of degree $n$ with roots $w_k \,\big|_{k = 0, 1, \dots,n - 1}$, and let $a, b \in \mathbb C\,, a \ne 0$ such that $aw_k + b \ne 0$ for all $k=0,1,\dots,n - 1$. Then:
$$\sum_{k=0}^{n-1} \frac{1}{aw_k + b} = -\,\frac{P'\left(- \dfrac{b}{a}\right)}{a\,P\left(- \dfrac{b}{a}\right)}$$
Let $z= aw+b \iff w = \dfrac{z-b}{a}$ then $z_k = aw_k + b$ are the roots of $Q(z) = P\left(\dfrac{z-b}{a}\right)$ $=q_nz^n + q_{n-1}z^{n-1} + \dots + q_1 z + q_0$ where $q_0 = Q(0) = P\left(- \dfrac{b}{a}\right)\,$, $q_1 = Q'(0) = \dfrac{1}{a} P'\left(- \dfrac{b}{a}\right)$. It follows from Vieta's relations that $\sum_{k=0}^{n-1} \dfrac{1}{z_k} = - \dfrac{q_1}{q_0}$ which completes the proof.
OP's problem is the case $n \mapsto 2n+1$, $P(w) = w^{2n+1} - 1$, $P'(w) = (2n+1) w^{2n}$, $a=b=1$, so: $$\sum_{k=0}^{2n} \dfrac{1}{1 + w_k} = -\dfrac{P'(-1)}{P(-1)} = - \dfrac{2n+1}{-2} = \dfrac{2n+1}{2}$$