The proposed relation can be proved by verifying the identity of the Mellin transforms of both sides.
For the lhs, we use the Mellin convolution formula:
\begin{equation}
\mathcal M\left[\int_{0}^{\infty}g(xy)f(x)\,dx\right]= G(s)F(1-s)
\end{equation}
Here, we take
\begin{align}
f(x)&={}_2 F_1(a,b;3/2;-x^2 c^2)\,x\\
g(x)&=\sin x
\end{align}
One has
\begin{align}
F(s)&=\int_0^\infty x^s{}_2 F_1(a,b;3/2;-x^2 c^2)\,dx\\
&=\frac{c^{-s-1}}{2}\int_0^\infty{}_2 F_1(a,b;3/2;-u)\,u^{\frac{s-1}{2}}\,du
\end{align} assuming $c>0$.
From the tabulated transform (DLMF)
\begin{equation}
\int_{0}^{\infty}x^{\sigma-1}{}_2 F_1\left({a,b\atop d};-u\right)\,du=\Gamma(d)
\frac{\Gamma\left(\sigma\right)\Gamma\left(a-\sigma\right)\Gamma\left(b-\sigma\right)}
{\Gamma\left(a\right)\Gamma\left(b\right)\Gamma\left(d-\sigma\right)}
\end{equation}
for $0<\Re(\sigma)<\min\left( \Re(a),\Re(b) \right)$. We take $\sigma=(s+1)/2,d=3/2$ to write
\begin{align}
F(s)&=\frac{c^{-s-1}}{2}\Gamma(3/2)
\frac{\Gamma\left((s+1)/2\right)\Gamma\left(a-(s+1)/2\right)\Gamma\left(b-(s+1)/2\right)}
{\Gamma\left(a\right)\Gamma\left(b\right)\Gamma\left(3/2-(s+1)/2\right)}\\
&=\frac{\sqrt{\pi}c^{-s-1}}{4}
\frac{\Gamma\left((s+1)/2\right)\Gamma\left(a-(s+1)/2\right)\Gamma\left(b-(s+1)/2\right)}
{\Gamma\left(a\right)\Gamma\left(b\right)\Gamma\left(1-s/2\right)}
\end{align}
We assume $a>b$, the condition is $-1<\Re s<2\Re b-1$.
Using the reflection formula,
\begin{align}
G(s)&=\mathcal M[\sin x]\\
&=\Gamma(s)\sin\left( \frac{\pi s}{2} \right)\\
&=\frac{\pi \Gamma(s)}{\Gamma(s/2)\Gamma(1-s/2)}
\end{align}
for $-1<\Re(s)<1$
Then,
\begin{equation}
G(s)F(1-s)=\frac{\pi^{3/2}c^{s-2}}{4}\frac{ \Gamma(s)}{\Gamma(s/2)}
\frac{\Gamma\left(a+s/2-1\right)\Gamma\left(b+s/2-1\right)}
{\Gamma\left(a\right)\Gamma\left(b\right)\Gamma\left((1+s)/2\right)}
\end{equation}
with the dupplication formula
\begin{equation}
\Gamma\left(2z\right)=\pi^{-1/2}2^{2z-1}\Gamma\left(z\right)\Gamma\left(z+\tfrac{1}{2}\right)
\end{equation}
we obtain
\begin{equation}
G(s)F(1-s)=2^{s-3}\pi c^{2-s}
\frac{\Gamma\left(a+s/2-1\right)\Gamma\left(b+s/2-1\right)}{\Gamma\left(a\right)\Gamma\left(b\right)}
\end{equation}
This expression is valid for $-1<\Re s<\min\left( 1,2b-1 \right)$. As $b>1/2$ we can take $-1<\Re s<1$.
The Mellin transform of the rhs is
\begin{align}
\mathcal M\left[\dfrac{2^{-a-b+1}\pi c^{-a-b}y^{a+b-2}K_{a-b}(y/c)}{\Gamma(a)\Gamma(b)}\right]&=\frac{2^{-a-b+1}\pi c^{-a-b}}{\Gamma(a)\Gamma(b)}\mathcal M\left[y^{a+b-2}K_{a-b}(y/c)\right]\\
&=\frac{2^{-a-b+1}\pi }{\Gamma(a)\Gamma(b)}c^{s-2}\left.\mathcal M\left[K_{a-b}(.)\right]\right|_{s+a+b-2}\\
&=\frac{2^{-a-b+1}\pi }{\Gamma(a)\Gamma(b)}c^{s-2}2^{s+a+b-4}\Gamma(a+s/2-1)\Gamma(b+s/2-1)\\
&=\frac{2^{s-3}\pi }{\Gamma(a)\Gamma(b)}c^{s-2}\Gamma(a+s/2-1)\Gamma(b+s/2-1)
\end{align}
where we used the tabulated Mellin transform of the Bessel function DLMF. It is valid here for $\Re s>\Re|a-b|-\Re(a+b)+2$ or $\Re s>2(1-\Re b)$.
The Mellin transforms of both sides are thus identical if we take $\max\left(-1,2(1-\Re b)\right)<\Re s<1$, which proves the proposed relation.