Let $G$ be a finite abelian group with a transitive faithful action on set $X,|X|=n$. Prove $|G|=n.$
Since the action is transitive $g^{-1}{\rm Stab}_G(x)g={\rm Stab}_G(y)$.
$G$ is abelian $\implies {\rm Stab}_G(x)={\rm Stab}_G(y)$.
Using ${\rm Stab}_G(x)={\rm Stab}_G(y)\implies {\rm Stab}_G(x)=\{{e}\}.$ (If $$\{e\} \neq g\in {\rm Stab}_G(x),\forall x\in X, g\cdot x=x,$$ a contradiction since the action is faithful.)
Using orbit stabilizer theorem, $|O(x)|=\frac{G}{{\rm Stab}_G(x)} \implies n=\frac{G}{1} \implies |G|=n$.
Is my solution correct?
Any ideas how to solve in another ways? (Burnside's lemma and other different ways)
Thanks!