My try .
here (Which is greater $\frac{13}{32}$ or $\ln \left(\frac{3}{2}\right)$) Michael Rozenberg show :
let $0<x\leq 1$ :
$$\ln{x}\geq(x-1)\sqrt[3]{\frac{2}{x^2+x}}$$
Now we need to show :
$$(x-1)\sqrt[3]{\frac{2}{x^2+x}}\geq \frac{x-1}{2x+2}\left(1+\sqrt{\frac{2x^{2}+5x+2}{x}}\right)$$
or :
$$\sqrt[3]{\frac{2}{x^2+x}}\geq \frac{1}{2x+2}\left(1+\sqrt{\frac{2x^{2}+5x+2}{x}}\right)$$
I'm stuck here .Hope someone can achieve this .
Edit :
In fact using Wolfram Alpha we can conclude quicly see this logarithmic derivative link
Just some remarks for another proof :
We have the inequality :
$$\sqrt{\frac{\left(2x^{2}+5x+2\right)}{x}}\geq \frac{3}{2}\left(\sqrt{\frac{1}{x^{a}}}+\sqrt{x^{a}}\right)$$
Where :
$$a=\frac{2\sqrt{2}}{3}$$
So we need to show :
$$\left(\frac{3}{2}\left(\sqrt{\frac{1}{x^{a}}}+\sqrt{x^{a}}\right)+1\right)\left(x-1\right)\cdot\frac{1}{\left(2x+2\right)}-\ln\left(x\right)\leq 0$$
Or $x\to x^{\frac{2}{a}}$ :
$$\left(\frac{3}{2}\left(\frac{1}{x}+x\right)+1\right)\left(x^{\frac{2}{a}}-1\right)\cdot\frac{1}{\left(2x^{\frac{2}{a}}+2\right)}-\frac{\ln\left(x\right)2}{a}\leq 0$$
Now we substitute $\ln(x)=y$ and then we can use derivative .