Show that $a_{n+1} = a_{n} + a_{n}^{\frac{1}{3}}$ satisfies $\lim_{n\to\infty}\frac{a_n}{pn^q}=1$ for some real valued $p, q$.
I had hoped that I could use a strategy similar to Aproximation of $a_n$ where $a_{n+1}=a_n+\sqrt {a_n}$, wherein the author found that $\lim_{n\to\infty}\sqrt{a_{n+1}}-\sqrt{a_n}=\frac{1}{2}$ and used the telescoping sum $\sum_{k=1}^{n-1}\sqrt{a_{k+1}}-\sqrt{a_k}\approx\frac{1}{2}n$ to approximate $\sqrt{a_n}$. However, $a_{n+1}^{\frac{1}{3}}-a_{n}^{\frac{1}{3}}=\frac{a_{n+1}-a_{n}}{a_{n+1}^{\frac{2}{3}}+a_{n+1}^{\frac{1}{3}}a_{n}^{\frac{1}{3}}+a_{n}^{\frac{2}{3}}}= \frac{a_{n}^\frac{1}{3}}{a_{n+1}^{\frac{2}{3}}+a_{n+1}^{\frac{1}{3}}a_{n}^{\frac{1}{3}}+a_{n}^{\frac{2}{3}}}= \frac{1}{\frac{a_{n+1}^{\frac{2}{3}}}{a_n^{\frac{1}{3}}}+a_{n+1}^{\frac{1}{3}}+a_{n}^{\frac{1}{3}}} $ which converges to $0$. I also tried $a_{n+1}^q-a_n^q$ for different positive and negative values of $q$ to no avail.
If anyone has any hints, I'd appreciate it. Thanks.